A graph neural network assisted reverse polymers engineering to design low bandgap benzothiophene polymers for light harvesting applications

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abrar U. Hassan , Cihat Güleryüz , Islam H. El Azab , Ashraf Y. Elnaggar , Mohamed H.H. Mahmoud
{"title":"A graph neural network assisted reverse polymers engineering to design low bandgap benzothiophene polymers for light harvesting applications","authors":"Abrar U. Hassan ,&nbsp;Cihat Güleryüz ,&nbsp;Islam H. El Azab ,&nbsp;Ashraf Y. Elnaggar ,&nbsp;Mohamed H.H. Mahmoud","doi":"10.1016/j.matchemphys.2025.130747","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present a novel approach to reverse polymer engineering utilizing a Graph Neural Network (GNN) framework to design low bandgap benzothiophene (BT) polymers for light harvesting applications. We have curated an extensive dataset comprising 57,556 structure-property pairs of BT-based compounds, leveraging expert knowledge to enhance the quality and relevance of the data. Our Transformer-Assisted Oriented pretrained model for on-demand polymer generation (TAO) demonstrates exceptional performance, achieving a chemical validity rate of 99.27 % in top-1 generation mode across a test set of 6000 generated polymers, marking the highest success rate reported among polymer generative models to date. Throughout the training process, the loss steadily decreased with each epoch, indicating that the model was learning effectively from the data. The model predictive accuracy is further validated by an impressive average R<sup>2</sup> value of 0.96 for 15 defined properties, highlighting the TAO with its robust capabilities in polymer design. The newly designed polymers exhibit a bandgap range of 1.5–3.40 eV, making them promising candidates for light harvesting applications. Additionally, their highest Synthetic Accessibility Likelihood Index (SALI) scores reach up to 17 and also indicates that the majority of these polymers are amenable to synthesis. This work not only advances the field of polymer design but also provides a powerful tool for the targeted development of materials with specific electronic properties.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"339 ","pages":"Article 130747"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425003931","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present a novel approach to reverse polymer engineering utilizing a Graph Neural Network (GNN) framework to design low bandgap benzothiophene (BT) polymers for light harvesting applications. We have curated an extensive dataset comprising 57,556 structure-property pairs of BT-based compounds, leveraging expert knowledge to enhance the quality and relevance of the data. Our Transformer-Assisted Oriented pretrained model for on-demand polymer generation (TAO) demonstrates exceptional performance, achieving a chemical validity rate of 99.27 % in top-1 generation mode across a test set of 6000 generated polymers, marking the highest success rate reported among polymer generative models to date. Throughout the training process, the loss steadily decreased with each epoch, indicating that the model was learning effectively from the data. The model predictive accuracy is further validated by an impressive average R2 value of 0.96 for 15 defined properties, highlighting the TAO with its robust capabilities in polymer design. The newly designed polymers exhibit a bandgap range of 1.5–3.40 eV, making them promising candidates for light harvesting applications. Additionally, their highest Synthetic Accessibility Likelihood Index (SALI) scores reach up to 17 and also indicates that the majority of these polymers are amenable to synthesis. This work not only advances the field of polymer design but also provides a powerful tool for the targeted development of materials with specific electronic properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信