Structure-preserving parametric finite element methods for simulating axisymmetric solid-state dewetting problems with anisotropic surface energies

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Meng Li, Chunjie Zhou
{"title":"Structure-preserving parametric finite element methods for simulating axisymmetric solid-state dewetting problems with anisotropic surface energies","authors":"Meng Li,&nbsp;Chunjie Zhou","doi":"10.1016/j.jcp.2025.113944","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state dewetting (SSD), a widespread phenomenon in solid-solid-vapor system, could be used to describe the accumulation of solid thin films on the substrate. In this work, we consider the sharp-interface model for axisymmetric SSD with anisotropic surface energy. By introducing two types of surface energy matrices from the anisotropy functions, we aim to design two structure-preserving algorithms for the axisymmetric SSD. The newly designed schemes are applicable to a broader range of anisotropy functions, and we can theoretically prove their volume conservation and energy stability. In addition, based on a novel weak formulation for the axisymmetric SSD, we further build another two numerical schemes that have good mesh properties. Finally, numerous numerical tests are reported to showcase the accuracy and efficiency of the numerical methods.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"531 ","pages":"Article 113944"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500227X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state dewetting (SSD), a widespread phenomenon in solid-solid-vapor system, could be used to describe the accumulation of solid thin films on the substrate. In this work, we consider the sharp-interface model for axisymmetric SSD with anisotropic surface energy. By introducing two types of surface energy matrices from the anisotropy functions, we aim to design two structure-preserving algorithms for the axisymmetric SSD. The newly designed schemes are applicable to a broader range of anisotropy functions, and we can theoretically prove their volume conservation and energy stability. In addition, based on a novel weak formulation for the axisymmetric SSD, we further build another two numerical schemes that have good mesh properties. Finally, numerous numerical tests are reported to showcase the accuracy and efficiency of the numerical methods.
用于模拟具有各向异性表面能的轴对称固态露化问题的结构保留参数有限元方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信