A planning approach for online adaptive proton therapy to cope with cone beam computed tomography inaccuracies

IF 3.4 Q2 ONCOLOGY
Michelle Oud , Sebastiaan Breedveld , Kelvin Ng Wei Siang , Roberto Cassetta , Steven Habraken , Zoltán Perkó , Ben Heijmen , Mischa Hoogeman
{"title":"A planning approach for online adaptive proton therapy to cope with cone beam computed tomography inaccuracies","authors":"Michelle Oud ,&nbsp;Sebastiaan Breedveld ,&nbsp;Kelvin Ng Wei Siang ,&nbsp;Roberto Cassetta ,&nbsp;Steven Habraken ,&nbsp;Zoltán Perkó ,&nbsp;Ben Heijmen ,&nbsp;Mischa Hoogeman","doi":"10.1016/j.phro.2025.100752","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>In online-adaptive proton therapy planning based on cone beam computed tomography (CBCT), CT number errors can pose challenges. We propose an approach for coping with CT number uncertainties by increasing range robustness settings (RRS) in online-adaptive planning. This was compared to our trigger-based offline (TB-Offline) adaptive approach, and to daily replanning using in-room CT-on-rails (CTOR).</div></div><div><h3>Material and methods</h3><div>For 23 head-and-neck cancer patients, a CTOR and CBCT were acquired in a single fraction. CTOR contours were copied rigidly onto the CBCT. CBCT-based plans were generated with 3, 6, 8, 10, and 12 % RRS, each with 1 mm setup-RS, followed by a forward dose calculation on the reference CTOR. This was compared to dose distributions from our TB-Offline approach (3 mm/3% SRS/RRS), also recomputed on the CTOR. Coverage (voxelwise-minimum) of the primary clinical target volume (CTV<sub>7000</sub>) and elective lymph nodes (CTV<sub>5425</sub>) and grade ≥ II normal tissue complication probabilities were compared between strategies.</div></div><div><h3>Results</h3><div>When going from RRS = 3 % to RRS = 10 %, the population 90th percentiles of CTV<sub>5425</sub> V<sub>94%</sub> improved from 89.6 % to 96.4 %, and CTV<sub>7000</sub> V<sub>94%</sub> from 92.8 % to 96.4 %. Substantial coverage loss (V<sub>94%</sub>&lt;95 %) with CBCT-based online adaptive and RRS = 10 % was observed in 1/23 evaluated patients for CTV<sub>7000</sub> and 2/23 for CTV<sub>5425</sub>. This was an improvement compared to 3/23 and 4/23 with TB-Offline. Moreover, for RRS = 10 % the average risk of xerostomia improved by 2.4 percentage point compared to TB-Offline.</div></div><div><h3>Conclusions</h3><div>Robust optimization with increased range robustness settings effectively mitigated dose degradation from CT number errors in CBCT-based online-adaptive proton therapy.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100752"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

In online-adaptive proton therapy planning based on cone beam computed tomography (CBCT), CT number errors can pose challenges. We propose an approach for coping with CT number uncertainties by increasing range robustness settings (RRS) in online-adaptive planning. This was compared to our trigger-based offline (TB-Offline) adaptive approach, and to daily replanning using in-room CT-on-rails (CTOR).

Material and methods

For 23 head-and-neck cancer patients, a CTOR and CBCT were acquired in a single fraction. CTOR contours were copied rigidly onto the CBCT. CBCT-based plans were generated with 3, 6, 8, 10, and 12 % RRS, each with 1 mm setup-RS, followed by a forward dose calculation on the reference CTOR. This was compared to dose distributions from our TB-Offline approach (3 mm/3% SRS/RRS), also recomputed on the CTOR. Coverage (voxelwise-minimum) of the primary clinical target volume (CTV7000) and elective lymph nodes (CTV5425) and grade ≥ II normal tissue complication probabilities were compared between strategies.

Results

When going from RRS = 3 % to RRS = 10 %, the population 90th percentiles of CTV5425 V94% improved from 89.6 % to 96.4 %, and CTV7000 V94% from 92.8 % to 96.4 %. Substantial coverage loss (V94%<95 %) with CBCT-based online adaptive and RRS = 10 % was observed in 1/23 evaluated patients for CTV7000 and 2/23 for CTV5425. This was an improvement compared to 3/23 and 4/23 with TB-Offline. Moreover, for RRS = 10 % the average risk of xerostomia improved by 2.4 percentage point compared to TB-Offline.

Conclusions

Robust optimization with increased range robustness settings effectively mitigated dose degradation from CT number errors in CBCT-based online-adaptive proton therapy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信