Microstructure related mechanical response and fatigue crack growth behavior of polymer electrolyte membrane under in-situ loading

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Wei Li , Xiaobo Cao , Liang Cai , Ibrahim Elbugdady , Yuzhe Jin , Chuanwen Sun
{"title":"Microstructure related mechanical response and fatigue crack growth behavior of polymer electrolyte membrane under in-situ loading","authors":"Wei Li ,&nbsp;Xiaobo Cao ,&nbsp;Liang Cai ,&nbsp;Ibrahim Elbugdady ,&nbsp;Yuzhe Jin ,&nbsp;Chuanwen Sun","doi":"10.1016/j.tafmec.2025.104934","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer electrolyte membrane (PEM) is a key component in fuel cells, however, its mechanical degradation behavior driven by fatigue is not yet well understood. Herein, combined with digital image correlation and microscopic observation, the multiscale mechanical response and crack growth behavior of PEM associated with microstructure were investigated using multiple in-situ tests including uniaxial tensile, stress relaxation and crack growth with different stress ratios. Results show that PEM clearly presents the rate dependence and anisotropy. Combined with the area statistics of hydrophobic main chains before and after tension, the plastic deformation mechanism associated with molecular chain rotation and unwinding was explained, and a modified multilayer viscoelastic-plastic constitutive model in consideration of the effects of plane stress, anisotropy and true stress was developed. Furthermore, based on the analysis of strain field at the near crack-tip, the size of cyclic plastic zone tends to increase with the increasing of crack length and stress ratio, but the effect of crack length on crack growth rate is more significant due to the larger stress concentration effect. Finally, the failure mechanism associated with ligament, tearing plane and resilient fatigue striation was elucidated.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"138 ","pages":"Article 104934"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225000928","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer electrolyte membrane (PEM) is a key component in fuel cells, however, its mechanical degradation behavior driven by fatigue is not yet well understood. Herein, combined with digital image correlation and microscopic observation, the multiscale mechanical response and crack growth behavior of PEM associated with microstructure were investigated using multiple in-situ tests including uniaxial tensile, stress relaxation and crack growth with different stress ratios. Results show that PEM clearly presents the rate dependence and anisotropy. Combined with the area statistics of hydrophobic main chains before and after tension, the plastic deformation mechanism associated with molecular chain rotation and unwinding was explained, and a modified multilayer viscoelastic-plastic constitutive model in consideration of the effects of plane stress, anisotropy and true stress was developed. Furthermore, based on the analysis of strain field at the near crack-tip, the size of cyclic plastic zone tends to increase with the increasing of crack length and stress ratio, but the effect of crack length on crack growth rate is more significant due to the larger stress concentration effect. Finally, the failure mechanism associated with ligament, tearing plane and resilient fatigue striation was elucidated.

Abstract Image

原位加载下聚合物电解质膜的微观结构相关机械响应和疲劳裂纹生长行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信