Forecasting and Early Warning System for Wastewater Treatment Plant Sensors Using Multitask and LSTM Neural Networks: A Simulated and Real-World Case Study

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nicolò Ciuccoli , Francesco Fatone , Massimiliano Sgroi , Anna Laura Eusebi , Riccardo Rosati , Laura Screpanti , Adriano Mancini , David Scaradozzi
{"title":"Forecasting and Early Warning System for Wastewater Treatment Plant Sensors Using Multitask and LSTM Neural Networks: A Simulated and Real-World Case Study","authors":"Nicolò Ciuccoli ,&nbsp;Francesco Fatone ,&nbsp;Massimiliano Sgroi ,&nbsp;Anna Laura Eusebi ,&nbsp;Riccardo Rosati ,&nbsp;Laura Screpanti ,&nbsp;Adriano Mancini ,&nbsp;David Scaradozzi","doi":"10.1016/j.compchemeng.2025.109103","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global water scarcity has made the safe reuse of treated wastewater essential, especially in agriculture, where untreated water poses risks to public health. Digitalizing Wastewater Treatment Plants (WWTPs) can enhance real-time water quality monitoring and optimize plant operations. This study implements an Early Warning System (EWS) at the Peschiera Borromeo WWTP in Milan, Italy, using predictive models based on simulated and real datasets to estimate key water quality parameters like Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS). A Multi-Task Learning (MTL) neural network provided real-time predictions and sensor malfunction detection, while a Long Short-Term Memory (LSTM) network forecasted water quality up to six hours ahead. Simulated data showed high correlation coefficients above 0.98, but real-world data reduced performance to 0.31–0.67. Despite this, the EWS shows strong potential for improving treated water reuse reliability and operational efficiency in WWTPs.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109103"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001073","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing global water scarcity has made the safe reuse of treated wastewater essential, especially in agriculture, where untreated water poses risks to public health. Digitalizing Wastewater Treatment Plants (WWTPs) can enhance real-time water quality monitoring and optimize plant operations. This study implements an Early Warning System (EWS) at the Peschiera Borromeo WWTP in Milan, Italy, using predictive models based on simulated and real datasets to estimate key water quality parameters like Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS). A Multi-Task Learning (MTL) neural network provided real-time predictions and sensor malfunction detection, while a Long Short-Term Memory (LSTM) network forecasted water quality up to six hours ahead. Simulated data showed high correlation coefficients above 0.98, but real-world data reduced performance to 0.31–0.67. Despite this, the EWS shows strong potential for improving treated water reuse reliability and operational efficiency in WWTPs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信