Integrating solid direct air capture systems with green hydrogen production: Economic benefits and curtailment reduction

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sunwoo Kim , Joungho Park , Jay H. Lee
{"title":"Integrating solid direct air capture systems with green hydrogen production: Economic benefits and curtailment reduction","authors":"Sunwoo Kim ,&nbsp;Joungho Park ,&nbsp;Jay H. Lee","doi":"10.1016/j.compchemeng.2025.109102","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to a low-carbon energy system has positioned green hydrogen as a key clean energy carrier. However, the intermittent nature of renewable energy sources introduces significant challenges, such as substantial electricity curtailment, which affects both the economic feasibility and grid stability. Solid sorbent-based direct air capture systems, known for their high operational flexibility, offer a promising complementary solution to effectively utilize curtailed renewable power from green hydrogen production. This study examines the economic viability of integrating green hydrogen systems with solid direct air capture technology. The findings indicate that the integration can reduce curtailed renewable energy by up to 40 %, subsequently decreasing total annualized costs by approximately 6 % compared to operating these systems independently. Further economic improvements could be realized by optimizing the CO<sub>2</sub> capture-to-H<sub>2</sub> production ratio, capitalizing on anticipated cost reductions in direct air capture technology, and enhancing heat pump flexibility. With these improvements—including a 50 % reduction in direct air capture costs, an optimized CO<sub>2</sub>-to-H<sub>2</sub> ratio, and enhanced heat pump flexibility—the economic benefits could increase from 6 % to 12 %. These results underscore the transformative potential of sector coupling in addressing the scalability challenges of green hydrogen, reducing renewable energy curtailment, and accelerating progress towards achieving net-zero and net-negative emissions goals.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109102"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001061","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The transition to a low-carbon energy system has positioned green hydrogen as a key clean energy carrier. However, the intermittent nature of renewable energy sources introduces significant challenges, such as substantial electricity curtailment, which affects both the economic feasibility and grid stability. Solid sorbent-based direct air capture systems, known for their high operational flexibility, offer a promising complementary solution to effectively utilize curtailed renewable power from green hydrogen production. This study examines the economic viability of integrating green hydrogen systems with solid direct air capture technology. The findings indicate that the integration can reduce curtailed renewable energy by up to 40 %, subsequently decreasing total annualized costs by approximately 6 % compared to operating these systems independently. Further economic improvements could be realized by optimizing the CO2 capture-to-H2 production ratio, capitalizing on anticipated cost reductions in direct air capture technology, and enhancing heat pump flexibility. With these improvements—including a 50 % reduction in direct air capture costs, an optimized CO2-to-H2 ratio, and enhanced heat pump flexibility—the economic benefits could increase from 6 % to 12 %. These results underscore the transformative potential of sector coupling in addressing the scalability challenges of green hydrogen, reducing renewable energy curtailment, and accelerating progress towards achieving net-zero and net-negative emissions goals.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信