Uddalak Das , Tathagata Chanda , Jitendra Kumar , Anitha Peter
{"title":"Discovery of natural MCL1 inhibitors using pharmacophore modelling, QSAR, docking, ADMET, molecular dynamics, and DFT analysis","authors":"Uddalak Das , Tathagata Chanda , Jitendra Kumar , Anitha Peter","doi":"10.1016/j.compbiolchem.2025.108427","DOIUrl":null,"url":null,"abstract":"<div><div>Mcl-1, a member of the Bcl-2 family, is a crucial regulator of apoptosis, frequently overexpressed in various cancers, including lung, breast, pancreatic, cervical, ovarian cancers, leukemia, and lymphoma. Its anti-apoptotic function allows tumor cells to evade cell death and contributes to drug resistance, making it an essential target for anticancer drug development. This study aimed to discover potent antileukemic compounds targeting Mcl-1. We selected diverse molecules from the BindingDB database to construct a structure-based pharmacophore model, which facilitated the virtual screening of 407,270 compounds from the COCONUT database. An e-pharmacophore model was developed using the co-crystallized inhibitor, followed by QSAR modeling to estimate IC<sub>50</sub> values and filter compounds with predicted values below the median. The top hits underwent molecular docking and MMGBSA binding energy calculations against Mcl-1, resulting in the selection of two promising candidates for further ADMET analysis. DFT calculations assessed their electronic properties, confirming favorable reactivity profiles of the screened compounds. Predictions for physicochemical and ADMET properties aligned with expected bioactivity and safety. Molecular dynamics simulations further validated their strong binding affinity and stability, positioning them as potential Mcl-1 inhibitors. Our comprehensive computational approach highlights these compounds as promising antileukemic agents, with future <em>in vivo</em> and <em>in vitro</em> validation recommended for further confirmation.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"117 ","pages":"Article 108427"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000878","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mcl-1, a member of the Bcl-2 family, is a crucial regulator of apoptosis, frequently overexpressed in various cancers, including lung, breast, pancreatic, cervical, ovarian cancers, leukemia, and lymphoma. Its anti-apoptotic function allows tumor cells to evade cell death and contributes to drug resistance, making it an essential target for anticancer drug development. This study aimed to discover potent antileukemic compounds targeting Mcl-1. We selected diverse molecules from the BindingDB database to construct a structure-based pharmacophore model, which facilitated the virtual screening of 407,270 compounds from the COCONUT database. An e-pharmacophore model was developed using the co-crystallized inhibitor, followed by QSAR modeling to estimate IC50 values and filter compounds with predicted values below the median. The top hits underwent molecular docking and MMGBSA binding energy calculations against Mcl-1, resulting in the selection of two promising candidates for further ADMET analysis. DFT calculations assessed their electronic properties, confirming favorable reactivity profiles of the screened compounds. Predictions for physicochemical and ADMET properties aligned with expected bioactivity and safety. Molecular dynamics simulations further validated their strong binding affinity and stability, positioning them as potential Mcl-1 inhibitors. Our comprehensive computational approach highlights these compounds as promising antileukemic agents, with future in vivo and in vitro validation recommended for further confirmation.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.