Leakage monitoring of carbon dioxide injection well string using distributed optical fiber sensor

Q1 Earth and Planetary Sciences
Sen Chen , Hongjuan You , Jinshan Xu , Maoan Wei , Tirun Xu , He Wang
{"title":"Leakage monitoring of carbon dioxide injection well string using distributed optical fiber sensor","authors":"Sen Chen ,&nbsp;Hongjuan You ,&nbsp;Jinshan Xu ,&nbsp;Maoan Wei ,&nbsp;Tirun Xu ,&nbsp;He Wang","doi":"10.1016/j.ptlrs.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Whether the oil and gas fields in the Carbon Capture, Utilization, and Storage (CCUS) project use underground storage or energy supplementation to enhance oil recovery, they must be injected or monitored through the wellbore. Thus, the foundation and requirement for the safety of carbon dioxide (CO<sub>2</sub>) storage is the wellbore's integrity. When CO<sub>2</sub> is dissolved in water, carbonic acid is created, and this acid strongly corrodes underground pipes. Therefore, the integrity issue with CO<sub>2</sub> injection wells is more noticeable than with other wellbores. An annular pressure during gas injection is the primary symptom of gas injection string leakage in CO<sub>2</sub> injection wells. This study aims to provide real-time pipe string monitoring using a distributed optical fiber temperature sensing system (DTS) and a distributed optical fiber acoustic sensing system (DAS). Variations in temperature and vibration are caused by annulus pressure relief or gas injection. Optical fiber logging, in contrast to traditional logging, has better performance indicators for optical fiber sensing apparatus. To adapt to complex wellbore conditions, it is necessary to enhance the temperature accuracy of DTS and the sensitivity and signal-to-noise ratio of DAS in CO<sub>2</sub> drive injection wells based on the features of the gas injection string. To differentiate the leakage signal from the regular fluid flow signal, the energy calculation in the frequency band is done for DAS based on noise reduction, and the signal processing in the frequency band is done by the spectrum characteristics of the CO<sub>2</sub> wellbore signal. The translation invariant wavelet algorithm is the primary denoising method for DTS, overcoming the shortcomings of traditional wavelet threshold algorithms such as excessive smoothing and the pseudo-Gibbs phenomenon. Furthermore, the depth correction during the optical cable lowering process is also examined in this paper. A CO<sub>2</sub> gas injection well field experiment was conducted using this technology. A 1671m well was dug, and 1631m of optical cable were installed in the tubing. The tubing leakage position was successfully identified through gas injection, annulus pressure relief, and a comparison of DAS and DTS data. The field results demonstrate the accuracy with which the gas injection string integrity can be accurately monitored in real-time using distributed optical fiber sensing technology for CO<sub>2</sub> injection wells.</div></div>","PeriodicalId":19756,"journal":{"name":"Petroleum Research","volume":"10 1","pages":"Pages 166-177"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096249524000796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Whether the oil and gas fields in the Carbon Capture, Utilization, and Storage (CCUS) project use underground storage or energy supplementation to enhance oil recovery, they must be injected or monitored through the wellbore. Thus, the foundation and requirement for the safety of carbon dioxide (CO2) storage is the wellbore's integrity. When CO2 is dissolved in water, carbonic acid is created, and this acid strongly corrodes underground pipes. Therefore, the integrity issue with CO2 injection wells is more noticeable than with other wellbores. An annular pressure during gas injection is the primary symptom of gas injection string leakage in CO2 injection wells. This study aims to provide real-time pipe string monitoring using a distributed optical fiber temperature sensing system (DTS) and a distributed optical fiber acoustic sensing system (DAS). Variations in temperature and vibration are caused by annulus pressure relief or gas injection. Optical fiber logging, in contrast to traditional logging, has better performance indicators for optical fiber sensing apparatus. To adapt to complex wellbore conditions, it is necessary to enhance the temperature accuracy of DTS and the sensitivity and signal-to-noise ratio of DAS in CO2 drive injection wells based on the features of the gas injection string. To differentiate the leakage signal from the regular fluid flow signal, the energy calculation in the frequency band is done for DAS based on noise reduction, and the signal processing in the frequency band is done by the spectrum characteristics of the CO2 wellbore signal. The translation invariant wavelet algorithm is the primary denoising method for DTS, overcoming the shortcomings of traditional wavelet threshold algorithms such as excessive smoothing and the pseudo-Gibbs phenomenon. Furthermore, the depth correction during the optical cable lowering process is also examined in this paper. A CO2 gas injection well field experiment was conducted using this technology. A 1671m well was dug, and 1631m of optical cable were installed in the tubing. The tubing leakage position was successfully identified through gas injection, annulus pressure relief, and a comparison of DAS and DTS data. The field results demonstrate the accuracy with which the gas injection string integrity can be accurately monitored in real-time using distributed optical fiber sensing technology for CO2 injection wells.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum Research
Petroleum Research Earth and Planetary Sciences-Geology
CiteScore
7.10
自引率
0.00%
发文量
90
审稿时长
35 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信