Qiqi Lai , Chongshen Chen , Momeng Liu , Yang Yang , Yong Yu
{"title":"PQHealthcare: An efficient cloud data sharing system via Functional Encryption from lattices","authors":"Qiqi Lai , Chongshen Chen , Momeng Liu , Yang Yang , Yong Yu","doi":"10.1016/j.csi.2025.103993","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of the large language models (<span><math><mi>LLM</mi></math></span>) service on the cloud, especially in the healthcare sector, the usage of large models is becoming increasingly popular. However, training these models always involves sensitive information containing lots of personal medical data. And thus, such training processes might result in the exposure of privacy information. In order to help the users eliminate their concerns and share their data in a secure way, we need to find a privacy-preserving method for data sharing in the public cloud service environment.</div><div>While traditional public-key encryption (<span><math><mi>PKE</mi></math></span>) schemes can effectively encrypt healthcare data, they typically offer protection in an “all-or-nothing” manner, lacking flexibility and imposing a significant computational burden on public cloud servers. In contrast, Functional Encryption (<span><math><mi>FE</mi></math></span>) offers a more flexible way of encryption with access control, making it ideal for the cloud data sharing environment. Furthermore, we observe that the majority of computations involved in training large models can be represented by inner product functions. To establish a secure public cloud data sharing system, we propose an efficient <span><math><mi>FE</mi></math></span> scheme for inner product function class, making it well-suited for various real-world applications. We will demonstrate that our scheme achieves post-quantum security based on lattice assumptions.</div></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"94 ","pages":"Article 103993"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548925000224","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of the large language models () service on the cloud, especially in the healthcare sector, the usage of large models is becoming increasingly popular. However, training these models always involves sensitive information containing lots of personal medical data. And thus, such training processes might result in the exposure of privacy information. In order to help the users eliminate their concerns and share their data in a secure way, we need to find a privacy-preserving method for data sharing in the public cloud service environment.
While traditional public-key encryption () schemes can effectively encrypt healthcare data, they typically offer protection in an “all-or-nothing” manner, lacking flexibility and imposing a significant computational burden on public cloud servers. In contrast, Functional Encryption () offers a more flexible way of encryption with access control, making it ideal for the cloud data sharing environment. Furthermore, we observe that the majority of computations involved in training large models can be represented by inner product functions. To establish a secure public cloud data sharing system, we propose an efficient scheme for inner product function class, making it well-suited for various real-world applications. We will demonstrate that our scheme achieves post-quantum security based on lattice assumptions.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.