Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Sumiya Akter Dristy, Md Ahasan Habib, Shusen Lin, Mehedi Hasan Joni, Rutuja Mandavkar, Young-Uk Chung, Md Najibullah, Jihoon Lee
{"title":"Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting","authors":"Sumiya Akter Dristy,&nbsp;Md Ahasan Habib,&nbsp;Shusen Lin,&nbsp;Mehedi Hasan Joni,&nbsp;Rutuja Mandavkar,&nbsp;Young-Uk Chung,&nbsp;Md Najibullah,&nbsp;Jihoon Lee","doi":"10.1016/j.actphy.2025.100079","DOIUrl":null,"url":null,"abstract":"<div><div>Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated <em>via</em> a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 ​mV for HER (hydrogen evolution reaction) and 280 ​mV for OER (oxygen evolution reaction) at 100 ​mA ​cm<sup>−2</sup> in 1 ​mol ​L<sup>−1</sup> KOH. The bifunctional Zn/NiBP || Zn/NiBP demonstrates a 3.10 ​V cell voltage at 2000 ​mA ​cm<sup>−2</sup> in 1 ​mol ​L<sup>−1</sup> KOH, surpassing the benchmark Pt/C || RuO<sub>2</sub> systems. The Pt/C || Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 ​V at 2000 ​mA ​cm<sup>−2</sup> in 1 and 6 ​mol ​L<sup>−1</sup> KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 ​h at 1000 ​mA ​cm<sup>−2</sup> in 1 and 6 ​mol ​L<sup>−1</sup> KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 7","pages":"Article 100079"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000359","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated via a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 ​mV for HER (hydrogen evolution reaction) and 280 ​mV for OER (oxygen evolution reaction) at 100 ​mA ​cm−2 in 1 ​mol ​L−1 KOH. The bifunctional Zn/NiBP || Zn/NiBP demonstrates a 3.10 ​V cell voltage at 2000 ​mA ​cm−2 in 1 ​mol ​L−1 KOH, surpassing the benchmark Pt/C || RuO2 systems. The Pt/C || Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 ​V at 2000 ​mA ​cm−2 in 1 and 6 ​mol ​L−1 KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 ​h at 1000 ​mA ​cm−2 in 1 and 6 ​mol ​L−1 KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信