Optimizing fracture resistance in steel fiber-reinforced self-consolidating concrete: Insights from mode II and mode I fracture energy analysis

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Majid Ghomian , Mehdi Dehestani , Sajad Garshasbi , Nima Azimi
{"title":"Optimizing fracture resistance in steel fiber-reinforced self-consolidating concrete: Insights from mode II and mode I fracture energy analysis","authors":"Majid Ghomian ,&nbsp;Mehdi Dehestani ,&nbsp;Sajad Garshasbi ,&nbsp;Nima Azimi","doi":"10.1016/j.istruc.2025.108707","DOIUrl":null,"url":null,"abstract":"<div><div>Fracture behavior in concrete is critical for structural integrity, especially under shear-dominated loading conditions where mode II fracture prevails. The present investigation examines the fracture resistance of self-consolidating concrete (SCC) reinforced with steel fibers, with a focus on analyzing both Mode II and Mode I fracture energies. Using the Bažant size effect method, the study explores how compressive strength, fiber content, and specimen size influence the fracture behavior of SCC. The results demonstrate that Mode II fracture energy increases significantly with both compressive strength and fiber content. A pronounced size effect is observed, particularly in larger specimens, where the influence of shear becomes more evident. Even a small addition of 0.3 % fiber volume notably enhances mode I fracture energy by 60 %, while higher fiber volumes affect fracture behavior depending on specimen size. Mode II fracture energy in SCC is found to be over 20 times greater than mode I, although this ratio decreases as fiber content rises. Notably, SCC with or without fibers exhibits lower mode II fracture energy compared to conventional concrete, highlighting the unique challenges and behaviors of fiber-reinforced SCC under shear stress. This investigation provides valuable insights into optimizing fiber content to improve both shear and tensile fracture resistance in SCC.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"75 ","pages":"Article 108707"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012425005211","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Fracture behavior in concrete is critical for structural integrity, especially under shear-dominated loading conditions where mode II fracture prevails. The present investigation examines the fracture resistance of self-consolidating concrete (SCC) reinforced with steel fibers, with a focus on analyzing both Mode II and Mode I fracture energies. Using the Bažant size effect method, the study explores how compressive strength, fiber content, and specimen size influence the fracture behavior of SCC. The results demonstrate that Mode II fracture energy increases significantly with both compressive strength and fiber content. A pronounced size effect is observed, particularly in larger specimens, where the influence of shear becomes more evident. Even a small addition of 0.3 % fiber volume notably enhances mode I fracture energy by 60 %, while higher fiber volumes affect fracture behavior depending on specimen size. Mode II fracture energy in SCC is found to be over 20 times greater than mode I, although this ratio decreases as fiber content rises. Notably, SCC with or without fibers exhibits lower mode II fracture energy compared to conventional concrete, highlighting the unique challenges and behaviors of fiber-reinforced SCC under shear stress. This investigation provides valuable insights into optimizing fiber content to improve both shear and tensile fracture resistance in SCC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信