Guillem Llodrà , Pere Mujal , Roberta Zambrini , Gian Luca Giorgi
{"title":"Quantum reservoir computing in atomic lattices","authors":"Guillem Llodrà , Pere Mujal , Roberta Zambrini , Gian Luca Giorgi","doi":"10.1016/j.chaos.2025.116289","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum reservoir computing (QRC) exploits the dynamical properties of quantum systems to perform machine learning tasks. We demonstrate that optimal performance in QRC can be achieved without relying on disordered systems. Systems with all-to-all topologies and random couplings are generally considered to minimize redundancies and enhance performance. In contrast, our work investigates the one-dimensional Bose–Hubbard model with homogeneous couplings, where a chaotic phase arises from the interplay between coupling and interaction terms. Interestingly, we find that performance in different tasks can be enhanced either in the chaotic regime or in the weak interaction limit. Our findings challenge conventional design principles and indicate the potential for simpler and more efficient QRC implementations tailored to specific tasks in Bose–Hubbard lattices.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"195 ","pages":"Article 116289"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003029","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum reservoir computing (QRC) exploits the dynamical properties of quantum systems to perform machine learning tasks. We demonstrate that optimal performance in QRC can be achieved without relying on disordered systems. Systems with all-to-all topologies and random couplings are generally considered to minimize redundancies and enhance performance. In contrast, our work investigates the one-dimensional Bose–Hubbard model with homogeneous couplings, where a chaotic phase arises from the interplay between coupling and interaction terms. Interestingly, we find that performance in different tasks can be enhanced either in the chaotic regime or in the weak interaction limit. Our findings challenge conventional design principles and indicate the potential for simpler and more efficient QRC implementations tailored to specific tasks in Bose–Hubbard lattices.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.