{"title":"Evaluating the potential of quantum machine learning in cybersecurity: A case-study on PCA-based intrusion detection systems","authors":"Armando Bellante , Tommaso Fioravanti , Michele Carminati , Stefano Zanero , Alessandro Luongo","doi":"10.1016/j.cose.2025.104341","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum computing promises to revolutionize our understanding of the limits of computation, and its implications in cryptography have long been evident. Today, cryptographers are actively devising post-quantum solutions to counter the threats posed by quantum-enabled adversaries. Meanwhile, quantum scientists are innovating quantum protocols to empower defenders. However, the broader impact of quantum computing and quantum machine learning (QML) on other cybersecurity domains still needs to be explored. In this work, we investigate the potential impact of QML on cybersecurity applications of traditional ML. First, we explore the potential advantages of quantum computing in machine learning problems specifically related to cybersecurity. Then, we describe a methodology to quantify the future impact of fault-tolerant QML algorithms on real-world problems. As a case study, we apply our approach to standard methods and datasets in network intrusion detection, one of the most studied applications of machine learning in cybersecurity. Our results provide insight into the conditions for obtaining a quantum advantage and the need for future quantum hardware and software advancements.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"154 ","pages":"Article 104341"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825000306","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum computing promises to revolutionize our understanding of the limits of computation, and its implications in cryptography have long been evident. Today, cryptographers are actively devising post-quantum solutions to counter the threats posed by quantum-enabled adversaries. Meanwhile, quantum scientists are innovating quantum protocols to empower defenders. However, the broader impact of quantum computing and quantum machine learning (QML) on other cybersecurity domains still needs to be explored. In this work, we investigate the potential impact of QML on cybersecurity applications of traditional ML. First, we explore the potential advantages of quantum computing in machine learning problems specifically related to cybersecurity. Then, we describe a methodology to quantify the future impact of fault-tolerant QML algorithms on real-world problems. As a case study, we apply our approach to standard methods and datasets in network intrusion detection, one of the most studied applications of machine learning in cybersecurity. Our results provide insight into the conditions for obtaining a quantum advantage and the need for future quantum hardware and software advancements.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.