{"title":"Wavelet-based CSI reconstruction for improved wireless security through channel reciprocity","authors":"Nora Basha , Bechir Hamdaoui","doi":"10.1016/j.cose.2025.104423","DOIUrl":null,"url":null,"abstract":"<div><div>The reciprocity of channel state information (CSI) collected by two devices communicating over a wireless channel has been leveraged to provide security solutions to resource-limited IoT devices. Despite the extensive research that has been done on this topic, much of the focus has been on theoretical and simulation analysis. However, these security solutions face key implementation challenges, mostly pertaining to limitations of IoT hardware and variations of channel conditions, limiting their practical adoption. To address this research gap, we revisit the channel reciprocity assumption from an experimental standpoint using resource-constrained devices. Our experimental study reveals a significant degradation in channel reciprocity for low-cost devices due to the varying channel conditions. Through experimental investigations, we first identify key practical causes for the degraded channel reciprocity. We then propose a new wavelet-based CSI reconstruction technique using wavelet coherence and time-lagged cross-correlation to construct CSI data that are consistent between the two participating devices, resulting in significant improvement in channel reciprocity. Additionally, we propose a secret-key generation scheme that exploits the wavelet-based CSI reconstruction, yielding significant increase in the key generation rates. Finally, we propose a technique that exploits CSI temporal variations to enhance device authentication resiliency through effective detection of replay attacks.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"154 ","pages":"Article 104423"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825001129","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The reciprocity of channel state information (CSI) collected by two devices communicating over a wireless channel has been leveraged to provide security solutions to resource-limited IoT devices. Despite the extensive research that has been done on this topic, much of the focus has been on theoretical and simulation analysis. However, these security solutions face key implementation challenges, mostly pertaining to limitations of IoT hardware and variations of channel conditions, limiting their practical adoption. To address this research gap, we revisit the channel reciprocity assumption from an experimental standpoint using resource-constrained devices. Our experimental study reveals a significant degradation in channel reciprocity for low-cost devices due to the varying channel conditions. Through experimental investigations, we first identify key practical causes for the degraded channel reciprocity. We then propose a new wavelet-based CSI reconstruction technique using wavelet coherence and time-lagged cross-correlation to construct CSI data that are consistent between the two participating devices, resulting in significant improvement in channel reciprocity. Additionally, we propose a secret-key generation scheme that exploits the wavelet-based CSI reconstruction, yielding significant increase in the key generation rates. Finally, we propose a technique that exploits CSI temporal variations to enhance device authentication resiliency through effective detection of replay attacks.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.