Ana Julia Dal Forno , Graziela Piccoli Richetti , Vinícius Heinz Knaesel
{"title":"Fake news detection algorithms – A systematic literature review","authors":"Ana Julia Dal Forno , Graziela Piccoli Richetti , Vinícius Heinz Knaesel","doi":"10.1016/j.datak.2025.102441","DOIUrl":null,"url":null,"abstract":"<div><div>Social media and news platforms make available to their users, in real-time and simultaneously, access to a significant amount of content that may be true or false. It is remarkable that, with the evolution of Industry 4.0 technologies, the production and dissemination of fake news also increased in recent years. Some content quickly reaches considerable popularity because it is accessed and shared on a large scale, especially in social networks, thus having a potential for going viral. Thus, this study aimed to identify the algorithms and software used for fake news detection. The choice for this combination is justified because in Brazil this process is carried out manually by verification agencies and thus, based on the mapping of the algorithms identified in the literature, an architecture proposal will be developed using artificial intelligence. As a methodology, a systematic literature review (SLR) was conducted in the Science Direct and Scopus databases using the keywords \"fake news\" and \"machine learning\" to locate reviews and research articles published in Engineering fields from 2018 to 2023. A total of 24 articles were analyzed, and the results pointed out that Facebook and X<span><span><sup>1</sup></span></span> were the social networks most used to disseminate fake news. Moreover, the main topics addressed were the COVID-19 pandemic and the United States presidential elections of 2016 and 2020. As for the most used algorithms, a predominance of neural networks was observed. The contribution of this study is in mapping the most used algorithms and their degree of assertiveness, as well as identifying the themes, countries and related researchers that help in the evolution of the fake news theme.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"158 ","pages":"Article 102441"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000369","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Social media and news platforms make available to their users, in real-time and simultaneously, access to a significant amount of content that may be true or false. It is remarkable that, with the evolution of Industry 4.0 technologies, the production and dissemination of fake news also increased in recent years. Some content quickly reaches considerable popularity because it is accessed and shared on a large scale, especially in social networks, thus having a potential for going viral. Thus, this study aimed to identify the algorithms and software used for fake news detection. The choice for this combination is justified because in Brazil this process is carried out manually by verification agencies and thus, based on the mapping of the algorithms identified in the literature, an architecture proposal will be developed using artificial intelligence. As a methodology, a systematic literature review (SLR) was conducted in the Science Direct and Scopus databases using the keywords "fake news" and "machine learning" to locate reviews and research articles published in Engineering fields from 2018 to 2023. A total of 24 articles were analyzed, and the results pointed out that Facebook and X1 were the social networks most used to disseminate fake news. Moreover, the main topics addressed were the COVID-19 pandemic and the United States presidential elections of 2016 and 2020. As for the most used algorithms, a predominance of neural networks was observed. The contribution of this study is in mapping the most used algorithms and their degree of assertiveness, as well as identifying the themes, countries and related researchers that help in the evolution of the fake news theme.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.