Advancing depression detection on social media platforms through fine-tuned large language models

Q1 Social Sciences
Shahid Munir Shah , Syeda Anshrah Gillani , Mirza Samad Ahmed Baig , Muhammad Aamer Saleem , Muhammad Hamzah Siddiqui
{"title":"Advancing depression detection on social media platforms through fine-tuned large language models","authors":"Shahid Munir Shah ,&nbsp;Syeda Anshrah Gillani ,&nbsp;Mirza Samad Ahmed Baig ,&nbsp;Muhammad Aamer Saleem ,&nbsp;Muhammad Hamzah Siddiqui","doi":"10.1016/j.osnem.2025.100311","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the use of Large Language Models (LLMs) for improved depression detection from users’ social media data. Through the use of fine-tuned GPT-3.5 Turbo 1106 and LLaMA2-7B models and a sizable dataset from earlier studies, we were able to identify depressed content in social media posts with a high accuracy of 96.4%. The comparative analysis of the obtained results with the relevant studies in the literature and the base models shows that the proposed fine-tuned LLMs achieved enhanced performance compared to existing state-of-the-art systems and the base models. This demonstrates the robustness of LLM-based fine-tuned systems to be used as potential depression detection systems. The study describes the approach in depth, including the parameters used and the fine-tuning procedure, along with the dataset description and comparative summary of the results, indicating the important implications of the obtained results for the early diagnosis of depression on various social media platforms.</div></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"46 ","pages":"Article 100311"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696425000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the use of Large Language Models (LLMs) for improved depression detection from users’ social media data. Through the use of fine-tuned GPT-3.5 Turbo 1106 and LLaMA2-7B models and a sizable dataset from earlier studies, we were able to identify depressed content in social media posts with a high accuracy of 96.4%. The comparative analysis of the obtained results with the relevant studies in the literature and the base models shows that the proposed fine-tuned LLMs achieved enhanced performance compared to existing state-of-the-art systems and the base models. This demonstrates the robustness of LLM-based fine-tuned systems to be used as potential depression detection systems. The study describes the approach in depth, including the parameters used and the fine-tuning procedure, along with the dataset description and comparative summary of the results, indicating the important implications of the obtained results for the early diagnosis of depression on various social media platforms.
本研究探讨了如何使用大型语言模型(LLMs)从用户的社交媒体数据中改进抑郁检测。通过使用经过微调的 GPT-3.5 Turbo 1106 和 LLaMA2-7B 模型以及早期研究中的大量数据集,我们能够识别出社交媒体帖子中的抑郁内容,准确率高达 96.4%。将所获得的结果与文献中的相关研究和基础模型进行比较分析后发现,与现有的最先进系统和基础模型相比,所提出的微调 LLM 的性能得到了提高。这证明了基于 LLM 的微调系统的鲁棒性,可以用作潜在的抑郁检测系统。本研究深入介绍了该方法,包括使用的参数和微调程序,以及数据集描述和结果对比总结,指出了所获结果对在各种社交媒体平台上早期诊断抑郁症的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信