Si/Pyrex glass and poly(dimethylsiloxane)-based microfluidic devices with integrated heating elements for TiO2 nanoparticle synthesis

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Milena Rašljić Rafajilović , Katarina Radulović , Marija V. Pergal , Jovan Blanuša , Vladimir Rajić , Nikola Cvjetićanin , Dana Vasiljević-Radović
{"title":"Si/Pyrex glass and poly(dimethylsiloxane)-based microfluidic devices with integrated heating elements for TiO2 nanoparticle synthesis","authors":"Milena Rašljić Rafajilović ,&nbsp;Katarina Radulović ,&nbsp;Marija V. Pergal ,&nbsp;Jovan Blanuša ,&nbsp;Vladimir Rajić ,&nbsp;Nikola Cvjetićanin ,&nbsp;Dana Vasiljević-Radović","doi":"10.1016/j.jsamd.2025.100877","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents two microreactors used to synthesize titanium(IV) oxide (TiO<sub>2</sub>) nanoparticles. The microreactors under investigation incorporate integrated heaters and possess distinct microchannel dimensions. The first microreactor comprises silicon and Pyrex glass, with its integrated heater produced through p-type diffusion. Conversely, the second microreactor is constructed from polydimethylsiloxane (PDMS) and features a wire-based integrated heater. Recognizing the significance of temperature control in the synthesis process, both experimental and simulation results pertaining to the behavior of the microreactor heaters are provided. The synthesis of TiO<sub>2</sub> nanoparticles serves as a means to validate the efficacy of the microreactors. Comparative analysis reveals that the PDMS microreactor exhibits superior functionality when compared to the silicon/Pyrex glass counterpart. It has been demonstrated that upon a reaction time of 2 min within the microreactors, amorphous nanoparticles are formed, accompanied by partially developed crystallites corresponding to the anatase and rutile phases. Subsequent heating facilitates the complete conversion of the amorphous phase into the anatase phase. The utilization of a PDMS microreactor exhibits a heightened suitability for the synthesis of TiO<sub>2</sub> nanoparticles with good photocatalytic efficiency, achieving 93.59 % methylene blue (MB) degradation after 90 min. This suitability arises from several key factors: enhanced production speed, the cost-effectiveness inherent in the material, and the prevention of channel blockage attributed to calcification during the reaction process.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 2","pages":"Article 100877"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217925000309","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents two microreactors used to synthesize titanium(IV) oxide (TiO2) nanoparticles. The microreactors under investigation incorporate integrated heaters and possess distinct microchannel dimensions. The first microreactor comprises silicon and Pyrex glass, with its integrated heater produced through p-type diffusion. Conversely, the second microreactor is constructed from polydimethylsiloxane (PDMS) and features a wire-based integrated heater. Recognizing the significance of temperature control in the synthesis process, both experimental and simulation results pertaining to the behavior of the microreactor heaters are provided. The synthesis of TiO2 nanoparticles serves as a means to validate the efficacy of the microreactors. Comparative analysis reveals that the PDMS microreactor exhibits superior functionality when compared to the silicon/Pyrex glass counterpart. It has been demonstrated that upon a reaction time of 2 min within the microreactors, amorphous nanoparticles are formed, accompanied by partially developed crystallites corresponding to the anatase and rutile phases. Subsequent heating facilitates the complete conversion of the amorphous phase into the anatase phase. The utilization of a PDMS microreactor exhibits a heightened suitability for the synthesis of TiO2 nanoparticles with good photocatalytic efficiency, achieving 93.59 % methylene blue (MB) degradation after 90 min. This suitability arises from several key factors: enhanced production speed, the cost-effectiveness inherent in the material, and the prevention of channel blockage attributed to calcification during the reaction process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信