One-shot generative distribution matching for augmented RF-based UAV identification

Amir Kazemi , Salar Basiri , Volodymyr Kindratenko , Srinivasa Salapaka
{"title":"One-shot generative distribution matching for augmented RF-based UAV identification","authors":"Amir Kazemi ,&nbsp;Salar Basiri ,&nbsp;Volodymyr Kindratenko ,&nbsp;Srinivasa Salapaka","doi":"10.1016/j.mlwa.2025.100638","DOIUrl":null,"url":null,"abstract":"<div><div>This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments. The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective. To address these complications, the study introduces the rigorous use of one-shot generative methods for augmenting transformed RF signals, offering a significant improvement in UAV identification. This approach, when utilizing a distributional distance metric, demonstrates significant promise in low-data regimes, outperforming deep generative methods such as conditional generative adversarial networks (GANs) and variational autoencoders (VAEs). The paper provides a theoretical guarantee for the effectiveness of one-shot generative models in augmenting limited data, setting a precedent for their application in limited RF environments. This research also contributes to learning techniques in low-data regime scenarios, which may include complex sequences beyond images and videos. The code and links to datasets used in this study are available at <span><span>https://github.com/amir-kazemi/uav-rf-id</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100638"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments. The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective. To address these complications, the study introduces the rigorous use of one-shot generative methods for augmenting transformed RF signals, offering a significant improvement in UAV identification. This approach, when utilizing a distributional distance metric, demonstrates significant promise in low-data regimes, outperforming deep generative methods such as conditional generative adversarial networks (GANs) and variational autoencoders (VAEs). The paper provides a theoretical guarantee for the effectiveness of one-shot generative models in augmenting limited data, setting a precedent for their application in limited RF environments. This research also contributes to learning techniques in low-data regime scenarios, which may include complex sequences beyond images and videos. The code and links to datasets used in this study are available at https://github.com/amir-kazemi/uav-rf-id.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信