Deep learning-based identification of precipitation clouds from all-sky camera data for observatory safety

Mohammad H. Zhoolideh Haghighi , Alireza Ghasrimanesh , Habib Khosroshahi
{"title":"Deep learning-based identification of precipitation clouds from all-sky camera data for observatory safety","authors":"Mohammad H. Zhoolideh Haghighi ,&nbsp;Alireza Ghasrimanesh ,&nbsp;Habib Khosroshahi","doi":"10.1016/j.mlwa.2025.100640","DOIUrl":null,"url":null,"abstract":"<div><div>For monitoring the night sky conditions, wide-angle all-sky cameras are used in most astronomical observatories to monitor the sky cloudiness. In this manuscript, we apply a deep-learning approach for automating the identification of precipitation clouds in all-sky camera data as a cloud warning system. We construct our original training and test sets using the all-sky camera image archive of the Iranian National Observatory (INO). The training and test set images are labeled manually based on their potential rainfall and their distribution in the sky. We train our model on a set of roughly 2445 images taken by the INO all-sky camera through the deep learning method based on the EfficientNet network. Our model reaches an average accuracy of 99% in determining the cloud rainfall’s potential and an accuracy of 96% for cloud coverage. To enable a comprehensive comparison and evaluate the performance of alternative architectures for the task, we additionally trained three models—LeNet, DeiT, and AlexNet. This approach can be used for early warning of incoming dangerous clouds toward telescopes and harnesses the power of deep learning to automatically analyze vast amounts of all-sky camera data and accurately identify precipitation clouds formations. Our trained model can be deployed for real-time analysis, enabling the rapid identification of potential threats, and offering a scaleable solution that can improve our ability to safeguard telescopes and instruments in observatories. This is important now that numerous small- and medium-sized telescopes are increasingly integrated with smart control systems to reduce manual operation.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100640"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For monitoring the night sky conditions, wide-angle all-sky cameras are used in most astronomical observatories to monitor the sky cloudiness. In this manuscript, we apply a deep-learning approach for automating the identification of precipitation clouds in all-sky camera data as a cloud warning system. We construct our original training and test sets using the all-sky camera image archive of the Iranian National Observatory (INO). The training and test set images are labeled manually based on their potential rainfall and their distribution in the sky. We train our model on a set of roughly 2445 images taken by the INO all-sky camera through the deep learning method based on the EfficientNet network. Our model reaches an average accuracy of 99% in determining the cloud rainfall’s potential and an accuracy of 96% for cloud coverage. To enable a comprehensive comparison and evaluate the performance of alternative architectures for the task, we additionally trained three models—LeNet, DeiT, and AlexNet. This approach can be used for early warning of incoming dangerous clouds toward telescopes and harnesses the power of deep learning to automatically analyze vast amounts of all-sky camera data and accurately identify precipitation clouds formations. Our trained model can be deployed for real-time analysis, enabling the rapid identification of potential threats, and offering a scaleable solution that can improve our ability to safeguard telescopes and instruments in observatories. This is important now that numerous small- and medium-sized telescopes are increasingly integrated with smart control systems to reduce manual operation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信