Simultaneous Diophantine approximation to points on the Veronese curve

IF 1.5 1区 数学 Q1 MATHEMATICS
Dmitry Badziahin
{"title":"Simultaneous Diophantine approximation to points on the Veronese curve","authors":"Dmitry Badziahin","doi":"10.1016/j.aim.2025.110213","DOIUrl":null,"url":null,"abstract":"<div><div>We compute the Hausdorff dimension of the set of simultaneously <span><math><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup></math></span>-well approximable points on the Veronese curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <em>λ</em> between <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, the same result is given for a wider range of <em>λ</em> between <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We also provide a nontrivial upper bound for this Hausdorff dimension in the case <span><math><mi>λ</mi><mo>⩽</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. In the course of the proof we establish that the number of cubic polynomials of height at most <em>H</em> and non-zero discriminant at most <em>D</em> is bounded from above by <span><math><mi>c</mi><mo>(</mo><mi>ϵ</mi><mo>)</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>ϵ</mi></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"468 ","pages":"Article 110213"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001112","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the Hausdorff dimension of the set of simultaneously qλ-well approximable points on the Veronese curve in Rn for λ between 1n and 22n1. For n=3, the same result is given for a wider range of λ between 13 and 12. We also provide a nontrivial upper bound for this Hausdorff dimension in the case λ2n. In the course of the proof we establish that the number of cubic polynomials of height at most H and non-zero discriminant at most D is bounded from above by c(ϵ)H2/3+ϵD5/6.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信