{"title":"A practical aerodynamic model for dynamic textile manipulation in robotics","authors":"Franco Coltraro , Jaume Amorós , Carme Torras , Maria Alberich-Carramiñana","doi":"10.1016/j.mechmachtheory.2025.105993","DOIUrl":null,"url":null,"abstract":"<div><div>We study an aerodynamic model describing the interaction between cloth and air, with applications to dynamic textile manipulation by robots. After introducing the model, we investigate its theoretical implications by using an analytically solvable system: the damped pendulum. We deduce that aerodynamic forces in the model manifest themselves as a lifting force, more pronounced when the cloth transitions from rest to dynamic motion. The resulting aerodynamic model is simple, with no additional computational cost. The model is validated by comparing cloth simulations to real-world data as captured by a Motion Capture System: the results demonstrate errors of less than 1 cm even for size A2 textiles. Furthermore, we develop an a priori formula for estimating the parameters of the model for various textiles without further optimization. This formula allows us to present a challenging robotics application: a dynamic flattening motion is designed in simulation and then successfully executed by a robot without any fine-tuning or modification. The outcome, a smooth and rapid laying of the real textiles, demonstrates the minimal <em>sim-to-real</em> gap of our model even when aerodynamics plays a leading role.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"209 ","pages":"Article 105993"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25000825","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We study an aerodynamic model describing the interaction between cloth and air, with applications to dynamic textile manipulation by robots. After introducing the model, we investigate its theoretical implications by using an analytically solvable system: the damped pendulum. We deduce that aerodynamic forces in the model manifest themselves as a lifting force, more pronounced when the cloth transitions from rest to dynamic motion. The resulting aerodynamic model is simple, with no additional computational cost. The model is validated by comparing cloth simulations to real-world data as captured by a Motion Capture System: the results demonstrate errors of less than 1 cm even for size A2 textiles. Furthermore, we develop an a priori formula for estimating the parameters of the model for various textiles without further optimization. This formula allows us to present a challenging robotics application: a dynamic flattening motion is designed in simulation and then successfully executed by a robot without any fine-tuning or modification. The outcome, a smooth and rapid laying of the real textiles, demonstrates the minimal sim-to-real gap of our model even when aerodynamics plays a leading role.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry