Haoyu Zhai , Xiaoqing Shang , Minglang Li , Hao Lin , Ling Li , Yibin Tang , Shengyi Zhong
{"title":"Crystallographic and Thermodynamic Insights into Preferential Hydride Precipitation Sites in Zr-2.5Nb Alloy","authors":"Haoyu Zhai , Xiaoqing Shang , Minglang Li , Hao Lin , Ling Li , Yibin Tang , Shengyi Zhong","doi":"10.1016/j.jnucmat.2025.155752","DOIUrl":null,"url":null,"abstract":"<div><div>The Zr-2.5Nb alloy, widely used in nuclear applications, exhibits significant susceptibility to hydrogen-induced embrittlement due to hydride precipitation. This study investigates the preferential sites and mechanisms of hydride precipitation in Zr-2.5Nb alloys using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results show a predominance of intergranular hydrides, with grain boundaries (GBs) serving as the primary nucleation sites. Misorientation and GB energy exhibited a weak influence on intergranular hydride precipitation, while the interaction angle between basal planes and GBs (<span><math><msub><mi>α</mi><mrow><mi>G</mi><mi>B</mi><mo>−</mo><mi>B</mi><mi>P</mi></mrow></msub></math></span>) was found to determine hydride precipitation behavior. A modified thermodynamic model was developed to elucidate the interplay between GB energy, <span><math><msub><mi>α</mi><mrow><mi>G</mi><mi>B</mi><mo>−</mo><mi>B</mi><mi>P</mi></mrow></msub></math></span>, and hydride precipitation. Additionally, the lamellar β-Zr phase at GBs promotes hydride formation, which largely explains the weak correlation observed between misorientation and intergranular hydride precipitation. These findings provide insights into mitigating hydride-induced degradation in Zr alloys for enhanced performance in nuclear environments.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"609 ","pages":"Article 155752"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311525001473","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Zr-2.5Nb alloy, widely used in nuclear applications, exhibits significant susceptibility to hydrogen-induced embrittlement due to hydride precipitation. This study investigates the preferential sites and mechanisms of hydride precipitation in Zr-2.5Nb alloys using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results show a predominance of intergranular hydrides, with grain boundaries (GBs) serving as the primary nucleation sites. Misorientation and GB energy exhibited a weak influence on intergranular hydride precipitation, while the interaction angle between basal planes and GBs () was found to determine hydride precipitation behavior. A modified thermodynamic model was developed to elucidate the interplay between GB energy, , and hydride precipitation. Additionally, the lamellar β-Zr phase at GBs promotes hydride formation, which largely explains the weak correlation observed between misorientation and intergranular hydride precipitation. These findings provide insights into mitigating hydride-induced degradation in Zr alloys for enhanced performance in nuclear environments.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.