{"title":"Deep learning-based analysis of gross features for ovarian epithelial tumors classification: A tool to assist pathologists for frozen section sampling","authors":"Dong He , Longhai Jin , Hanhan Geng , Lanqing Cao","doi":"10.1016/j.humpath.2025.105762","DOIUrl":null,"url":null,"abstract":"<div><div>Computational pathology has primarily focused on analyzing tissue slides, neglecting the valuable information contained in gross images. To bridge this gap, we proposed a novel approach leveraging the Swin Transformer architecture to develop a Swin-Transformer based Gross Features Detective Network (SGFD-network), which assist pathologists for locating diseased area in ovarian epithelial tumors based on their gross features. Our model was trained on 4129 gross images and achieved high accuracy rates of 88.9 %, 86.4 %, and 93.0 % for benign, borderline, and carcinoma group, respectively, demonstrating strong agreement with pathologist evaluations. Notably, we trained a new classifier to distinguish between borderline tumors and those with microinvasion or microinvasive carcinoma, addressing a significant challenge in frozen section sampling. Our study was the first to propose a solution to this challenge, showcasing high accuracy rates of 85.0 % and 92.2 % for each group, respectively. To further elucidate the decision-making process, we employed Class Activation Mapping-grad to identify high-contribution zones and applied <em>k</em>-means clustering to summarize these features. The resulting clustered features can effectively complement existing knowledge of gross examination, improving the distinction between borderline tumors and those with microinvasion or microinvasive carcinoma. Our model identifies high-risk areas for microinvasion or microinvasive carcinoma, enabling pathologists to target sampling more effectively during frozen sections. Furthermore, SGFD-network requires only a single 4090 graphics card and completes a single interpretation task in 3 min. This study demonstrates the potential of deep learning-based analysis of gross features to aid in ovarian epithelial tumors sampling, especially in frozen section.</div></div>","PeriodicalId":13062,"journal":{"name":"Human pathology","volume":"157 ","pages":"Article 105762"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0046817725000498","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Computational pathology has primarily focused on analyzing tissue slides, neglecting the valuable information contained in gross images. To bridge this gap, we proposed a novel approach leveraging the Swin Transformer architecture to develop a Swin-Transformer based Gross Features Detective Network (SGFD-network), which assist pathologists for locating diseased area in ovarian epithelial tumors based on their gross features. Our model was trained on 4129 gross images and achieved high accuracy rates of 88.9 %, 86.4 %, and 93.0 % for benign, borderline, and carcinoma group, respectively, demonstrating strong agreement with pathologist evaluations. Notably, we trained a new classifier to distinguish between borderline tumors and those with microinvasion or microinvasive carcinoma, addressing a significant challenge in frozen section sampling. Our study was the first to propose a solution to this challenge, showcasing high accuracy rates of 85.0 % and 92.2 % for each group, respectively. To further elucidate the decision-making process, we employed Class Activation Mapping-grad to identify high-contribution zones and applied k-means clustering to summarize these features. The resulting clustered features can effectively complement existing knowledge of gross examination, improving the distinction between borderline tumors and those with microinvasion or microinvasive carcinoma. Our model identifies high-risk areas for microinvasion or microinvasive carcinoma, enabling pathologists to target sampling more effectively during frozen sections. Furthermore, SGFD-network requires only a single 4090 graphics card and completes a single interpretation task in 3 min. This study demonstrates the potential of deep learning-based analysis of gross features to aid in ovarian epithelial tumors sampling, especially in frozen section.
期刊介绍:
Human Pathology is designed to bring information of clinicopathologic significance to human disease to the laboratory and clinical physician. It presents information drawn from morphologic and clinical laboratory studies with direct relevance to the understanding of human diseases. Papers published concern morphologic and clinicopathologic observations, reviews of diseases, analyses of problems in pathology, significant collections of case material and advances in concepts or techniques of value in the analysis and diagnosis of disease. Theoretical and experimental pathology and molecular biology pertinent to human disease are included. This critical journal is well illustrated with exceptional reproductions of photomicrographs and microscopic anatomy.