Nan Zhang, Lu Dong, Sifan Liu, Tingting Ning, Shengtao Zhu
{"title":"MTFR1 phosphorylation-activated adaptive mitochondrial fusion is essential for colon cancer cell survival during glucose deprivation","authors":"Nan Zhang, Lu Dong, Sifan Liu, Tingting Ning, Shengtao Zhu","doi":"10.1016/j.neo.2025.101159","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Mitochondrial dynamics are essential for maintaining cellular function under metabolic stress. However, their role in colon cancer's response to glucose deprivation remains poorly understood.</div></div><div><h3>Methods</h3><div>The role of the mitochondrial protein MTFR1 in colon cancer proliferation was evaluated using CCK-8 and colony formation assays. Mass spectrometry identified MTFR1-interacting proteins and phosphorylation sites. Mitochondrial morphology was examined with Mitotracker staining, and mitochondrial function was evaluated using MitoSOX, JC-1 staining, and the Seahorse cell mitochondrial stress test.</div></div><div><h3>Results</h3><div>We observed that MTFR1 is highly expressed in colon cancer cells and interacts with NEK1 under glucose deprivation. This interaction induces phosphorylation of MTFR1 at serine 119, which promotes mitochondrial fusion and supports mitochondrial function. Consequently, enhanced oxidative phosphorylation improves cellular tolerance to glucose deprivation.</div></div><div><h3>Conclusions</h3><div>Our findings highlight the importance of MTFR1 in modulating mitochondrial dynamics and its potential impact on colon cancer cell survival under metabolic stress. These results suggest that MTFR1 serine 119 could be a key regulator of colon cancer cell metabolism and a potential therapeutic target for enhancing cancer cell response to metabolic challenges.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"63 ","pages":"Article 101159"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000387","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Mitochondrial dynamics are essential for maintaining cellular function under metabolic stress. However, their role in colon cancer's response to glucose deprivation remains poorly understood.
Methods
The role of the mitochondrial protein MTFR1 in colon cancer proliferation was evaluated using CCK-8 and colony formation assays. Mass spectrometry identified MTFR1-interacting proteins and phosphorylation sites. Mitochondrial morphology was examined with Mitotracker staining, and mitochondrial function was evaluated using MitoSOX, JC-1 staining, and the Seahorse cell mitochondrial stress test.
Results
We observed that MTFR1 is highly expressed in colon cancer cells and interacts with NEK1 under glucose deprivation. This interaction induces phosphorylation of MTFR1 at serine 119, which promotes mitochondrial fusion and supports mitochondrial function. Consequently, enhanced oxidative phosphorylation improves cellular tolerance to glucose deprivation.
Conclusions
Our findings highlight the importance of MTFR1 in modulating mitochondrial dynamics and its potential impact on colon cancer cell survival under metabolic stress. These results suggest that MTFR1 serine 119 could be a key regulator of colon cancer cell metabolism and a potential therapeutic target for enhancing cancer cell response to metabolic challenges.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.