Density measurements of homogeneous phase fluid mixtures comprising CO2/propanol and CO2/butanol binary systems and correlation with PC-SAFT equation of state

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Hiroaki Matsukawa , Masamune Yomori , Tomoya Tsuji , Katsuto Otake
{"title":"Density measurements of homogeneous phase fluid mixtures comprising CO2/propanol and CO2/butanol binary systems and correlation with PC-SAFT equation of state","authors":"Hiroaki Matsukawa ,&nbsp;Masamune Yomori ,&nbsp;Tomoya Tsuji ,&nbsp;Katsuto Otake","doi":"10.1016/j.fluid.2025.114424","DOIUrl":null,"url":null,"abstract":"<div><div>Given that supercritical CO<sub>2</sub>–alcohol mixtures are often encountered in natural gas, oil, and petroleum industries, the properties of binary CO<sub>2</sub>/alcohol mixtures are essential for chemical process design, and their prediction is important. Equations of state (EoSs) are powerful tools for estimating physical properties and can be used to determine those of CO<sub>2</sub>/alcohol binary mixtures if molecular association is considered, i.e., the examination of the CO<sub>2</sub>–alcohol association from the EoS perspective improves property estimation. Herein, the densities of homogeneous phase fluid mixtures comprising CO<sub>2</sub>/1-propanol, CO<sub>2</sub>/2-propanol, and CO<sub>2</sub>/1-butanol binary systems, which are greatly affected by mixing, were measured using a high-pressure vibration-type density meter equipped with a circulation pump and variable-volume viewing cell. Homogeneity was ensured by observing the fluid through the viewing window of the variable-volume cell. Measurements were carried out at temperatures of 313–353 K, CO<sub>2</sub> contents of 0–80 mol%, and pressures of up to 20 MPa, and the obtained data were correlated using the considering association between CO<sub>2</sub> and alcohol-perturbed chain-statistical associating fluid theory (CACA-PC-SAFT) EoS. The mixture density correlation was affected by the estimation accuracy of the pure-alcohol density. Therefore, the pure-alcohol density was correlated using the PC-SAFT EoS, and the pure-alcohol parameters were determined. The mixture density was effectively correlated using the CACA-PC-SAFT EoS based on these parameters. Furthermore, we determined the dependence of the obtained mixing parameters on temperature and alcohol species, revealing that mixing parameters could be predicted by combining experimental or quantum chemical information on alcohols or CO<sub>2</sub> and alcohols.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"595 ","pages":"Article 114424"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225000949","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Given that supercritical CO2–alcohol mixtures are often encountered in natural gas, oil, and petroleum industries, the properties of binary CO2/alcohol mixtures are essential for chemical process design, and their prediction is important. Equations of state (EoSs) are powerful tools for estimating physical properties and can be used to determine those of CO2/alcohol binary mixtures if molecular association is considered, i.e., the examination of the CO2–alcohol association from the EoS perspective improves property estimation. Herein, the densities of homogeneous phase fluid mixtures comprising CO2/1-propanol, CO2/2-propanol, and CO2/1-butanol binary systems, which are greatly affected by mixing, were measured using a high-pressure vibration-type density meter equipped with a circulation pump and variable-volume viewing cell. Homogeneity was ensured by observing the fluid through the viewing window of the variable-volume cell. Measurements were carried out at temperatures of 313–353 K, CO2 contents of 0–80 mol%, and pressures of up to 20 MPa, and the obtained data were correlated using the considering association between CO2 and alcohol-perturbed chain-statistical associating fluid theory (CACA-PC-SAFT) EoS. The mixture density correlation was affected by the estimation accuracy of the pure-alcohol density. Therefore, the pure-alcohol density was correlated using the PC-SAFT EoS, and the pure-alcohol parameters were determined. The mixture density was effectively correlated using the CACA-PC-SAFT EoS based on these parameters. Furthermore, we determined the dependence of the obtained mixing parameters on temperature and alcohol species, revealing that mixing parameters could be predicted by combining experimental or quantum chemical information on alcohols or CO2 and alcohols.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信