First-principles machine-learning study of infrared spectra of methane under extreme pressure and temperature conditions

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL
Gengxin Liu , Jiajia Huang , Rui Hou , Ding Pan
{"title":"First-principles machine-learning study of infrared spectra of methane under extreme pressure and temperature conditions","authors":"Gengxin Liu ,&nbsp;Jiajia Huang ,&nbsp;Rui Hou ,&nbsp;Ding Pan","doi":"10.1016/j.cplett.2025.142036","DOIUrl":null,"url":null,"abstract":"<div><div>Methane’s role in the Earth’s mantle environment highlights the need for studies under extreme conditions. Traditional methods like ab initio molecular dynamics (AIMD) are limited by time and system size, but machine learning offers a new approach. This study uses machine learning to create a force field for bulk methane, simulating conditions from 1445 K to 2000 K and pressures from 14.4 to 48 GPa. We generate molecular dynamics trajectories, compare them with AIMD, and develop a neural network model to predict dipoles for infrared (IR) spectra calculation. Our methodology advances efficient exploration of hydrocarbons under extreme conditions.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"869 ","pages":"Article 142036"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425001769","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Methane’s role in the Earth’s mantle environment highlights the need for studies under extreme conditions. Traditional methods like ab initio molecular dynamics (AIMD) are limited by time and system size, but machine learning offers a new approach. This study uses machine learning to create a force field for bulk methane, simulating conditions from 1445 K to 2000 K and pressures from 14.4 to 48 GPa. We generate molecular dynamics trajectories, compare them with AIMD, and develop a neural network model to predict dipoles for infrared (IR) spectra calculation. Our methodology advances efficient exploration of hydrocarbons under extreme conditions.

Abstract Image

甲烷在极端压力和温度条件下红外光谱的第一性原理机器学习研究
甲烷在地幔环境中的作用凸显了在极端条件下进行研究的必要性。像从头算分子动力学(AIMD)这样的传统方法受到时间和系统大小的限制,但机器学习提供了一种新的方法。这项研究使用机器学习来创建散装甲烷的力场,模拟1445 K到2000 K的条件和14.4到48 GPa的压力。我们生成分子动力学轨迹,将其与AIMD进行比较,并开发一个神经网络模型来预测红外(IR)光谱计算中的偶极子。我们的方法促进了极端条件下碳氢化合物的有效勘探。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信