{"title":"Formal specification and validation of the MVM-Adapt system using Compositional I/O Abstract State Machines","authors":"Silvia Bonfanti , Elvinia Riccobene , Patrizia Scandurra","doi":"10.1016/j.scico.2025.103299","DOIUrl":null,"url":null,"abstract":"<div><div>To face complexity and scalability, the design of software-intensive systems requires the <em>decomposition</em> of the system into components, each modeled and analyzed separately from the others, and the <em>composition</em> of their analysis. Moreover, compositional model simulation is recognized as the only alternative available in practice when systems are large and complex, like in the cyber-physical domain, and intrinsically require combining the specification of ensembles of different parts (subsystems). Therefore, the need for simulation engines for composed model execution is getting a growing interest.</div><div>Along this research line, this paper presents the results of the compositional modeling and validation by scenarios of an industrial medical system, called MVM-Adapt, that we designed as an adaptive version of an existing mechanical lung ventilator deployed and certified to treat pneumonia during the COVID-19 pandemic.</div><div>We exploit the I/O Abstract State Machine formalism to model the device components as separate and interacting sub-systems that communicate through I/O events and adapt the device ventilation mode at run-time based on the health parameters of the patient. An orchestrated simulation coordinates the overall execution of these communicating I/O ASMs by exploiting suitable workflow patterns.</div><div>This compositional simulation technique has proved to be useful in practice to validate the new adaptive MVM's behavior and thus to support architects in better understanding this new mode of operation of the prototyped system.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"244 ","pages":"Article 103299"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325000383","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
To face complexity and scalability, the design of software-intensive systems requires the decomposition of the system into components, each modeled and analyzed separately from the others, and the composition of their analysis. Moreover, compositional model simulation is recognized as the only alternative available in practice when systems are large and complex, like in the cyber-physical domain, and intrinsically require combining the specification of ensembles of different parts (subsystems). Therefore, the need for simulation engines for composed model execution is getting a growing interest.
Along this research line, this paper presents the results of the compositional modeling and validation by scenarios of an industrial medical system, called MVM-Adapt, that we designed as an adaptive version of an existing mechanical lung ventilator deployed and certified to treat pneumonia during the COVID-19 pandemic.
We exploit the I/O Abstract State Machine formalism to model the device components as separate and interacting sub-systems that communicate through I/O events and adapt the device ventilation mode at run-time based on the health parameters of the patient. An orchestrated simulation coordinates the overall execution of these communicating I/O ASMs by exploiting suitable workflow patterns.
This compositional simulation technique has proved to be useful in practice to validate the new adaptive MVM's behavior and thus to support architects in better understanding this new mode of operation of the prototyped system.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.