Influence of the properties of the elasticity modulus in the nasopharynx on the hydrodynamic characteristics of the flow in the upper respiratory tract
IF 3.1 3区 计算机科学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"Influence of the properties of the elasticity modulus in the nasopharynx on the hydrodynamic characteristics of the flow in the upper respiratory tract","authors":"Alibek Issakhov , Aidana Sabyrkulova , Aizhan Abylkassymova","doi":"10.1016/j.jocs.2025.102576","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the influence of the elasticity modulus (5–25 kPa) and inlet boundary conditions on the distribution of velocity, pressure, shear stress and strain in the upper airways was investigated using computational fluid dynamics (CFD) and fluid-structure interaction (FSI) models. Sinusoidal velocity profiles at the entrance to the nasal sinuses with oscillation amplitudes of 1.2 m/s, 2.4 m/s, 3.6 m/s were considered. The results show that the maximum value of deformation in the nasopharyngeal region occurred at a value of Young's modulus of 5 kPa, and values from 15 to 25 kPa gave deformation values lower by more than 20 % and had insignificant differences. In addition, the CFD model showed higher pressure and shear stress values than the FSI model, and the maximum velocity of the FSI models was higher than that of the CFD model. This study provides new data on the effect of modulus and inlet boundary conditions on velocity, pressure, shear stress, and strain distributions in the upper airways.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"87 ","pages":"Article 102576"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000535","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the influence of the elasticity modulus (5–25 kPa) and inlet boundary conditions on the distribution of velocity, pressure, shear stress and strain in the upper airways was investigated using computational fluid dynamics (CFD) and fluid-structure interaction (FSI) models. Sinusoidal velocity profiles at the entrance to the nasal sinuses with oscillation amplitudes of 1.2 m/s, 2.4 m/s, 3.6 m/s were considered. The results show that the maximum value of deformation in the nasopharyngeal region occurred at a value of Young's modulus of 5 kPa, and values from 15 to 25 kPa gave deformation values lower by more than 20 % and had insignificant differences. In addition, the CFD model showed higher pressure and shear stress values than the FSI model, and the maximum velocity of the FSI models was higher than that of the CFD model. This study provides new data on the effect of modulus and inlet boundary conditions on velocity, pressure, shear stress, and strain distributions in the upper airways.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).