{"title":"Geometric TSP on sets","authors":"Henk Alkema, Mark de Berg","doi":"10.1016/j.comgeo.2025.102187","DOIUrl":null,"url":null,"abstract":"<div><div>In <span>One-of-a-Set TSP</span>, also known as the <span>Generalised TSP</span>, the input is a collection <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of sets in a metric space and the goal is to compute a minimum-length tour that visits one element from each set.</div><div>In the Euclidean variant of this problem, each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be a hypercube that contains <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi></math></span>. We investigate how the complexity of <span>Euclidean One-of-a-Set TSP</span> depends on <em>λ</em>, the ply of the set <span><math><mi>H</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of hypercubes. (The ply is the smallest <em>λ</em> such that every point in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is contained in at most <em>λ</em> of the hypercubes). We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></msup></math></span> time, where <span><math><mi>n</mi><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></math></span> is the total number of points, and that the problem cannot be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time when <span><math><mi>λ</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, unless the Exponential Time Hypothesis (ETH) fails.</div><div>In <span>Rectilinear One-of-a-Cube TSP</span>, the input is a set <span><math><mi>H</mi></math></span> of hypercubes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and the goal is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time, where <em>n</em> is the number of hypercubes.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102187"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000252","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In One-of-a-Set TSP, also known as the Generalised TSP, the input is a collection of sets in a metric space and the goal is to compute a minimum-length tour that visits one element from each set.
In the Euclidean variant of this problem, each is a set of points in . Let be a hypercube that contains , for . We investigate how the complexity of Euclidean One-of-a-Set TSP depends on λ, the ply of the set of hypercubes. (The ply is the smallest λ such that every point in is contained in at most λ of the hypercubes). We show that the problem can be solved in time, where is the total number of points, and that the problem cannot be solved in time when , unless the Exponential Time Hypothesis (ETH) fails.
In Rectilinear One-of-a-Cube TSP, the input is a set of hypercubes in and the goal is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the problem can be solved in time, where n is the number of hypercubes.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.