Parallel line centers with guaranteed separation

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Chaeyoon Chung , Taehoon Ahn , Sang Won Bae , Hee-Kap Ahn
{"title":"Parallel line centers with guaranteed separation","authors":"Chaeyoon Chung ,&nbsp;Taehoon Ahn ,&nbsp;Sang Won Bae ,&nbsp;Hee-Kap Ahn","doi":"10.1016/j.comgeo.2025.102185","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set <em>P</em> of <em>n</em> points in the plane and an integer <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>k</em>-line-center problem asks <em>k</em> slabs whose union covers <em>P</em> that minimizes the maximum width of the <em>k</em> slabs. In this paper, we introduce a new variant of the <em>k</em>-line-center problem for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, in which the resulting <em>k</em> lines are parallel and a prescribed separation between two line centers is guaranteed. More precisely, we define a measure of separation, namely the gap-ratio of <em>k</em> parallel slabs, to be the minimum distance between any two slabs, divided by the width of the smallest slab enclosing the <em>k</em> slabs. We present efficient algorithms for the following problems: (1) Given a real <span><math><mn>0</mn><mo>&lt;</mo><mi>ρ</mi><mo>≤</mo><mn>1</mn></math></span>, compute <em>k</em> parallel slabs of minimum width that cover <em>P</em> with gap-ratio at least <em>ρ</em>. (2) Compute <em>k</em> parallel slabs that cover <em>P</em> with maximum possible gap-ratio. Our algorithms run in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mi>k</mi><mi>n</mi><mo>)</mo><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>max</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msubsup><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mi>k</mi><mi>n</mi><mo>)</mo><mo>)</mo></math></span> time, respectively, using <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></math></span> space, where <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> denotes the maximum possible gap-ratio of any <em>k</em> parallel slabs that cover <em>P</em>. Using linear space, the running times only slightly increase to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup><mo>⋅</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>max</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msubsup><mo>⋅</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102185"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000239","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set P of n points in the plane and an integer k1, the k-line-center problem asks k slabs whose union covers P that minimizes the maximum width of the k slabs. In this paper, we introduce a new variant of the k-line-center problem for k2, in which the resulting k lines are parallel and a prescribed separation between two line centers is guaranteed. More precisely, we define a measure of separation, namely the gap-ratio of k parallel slabs, to be the minimum distance between any two slabs, divided by the width of the smallest slab enclosing the k slabs. We present efficient algorithms for the following problems: (1) Given a real 0<ρ1, compute k parallel slabs of minimum width that cover P with gap-ratio at least ρ. (2) Compute k parallel slabs that cover P with maximum possible gap-ratio. Our algorithms run in O(ρk(nlogn+kn)) and O(ρmaxk(nlogn+kn)) time, respectively, using O(knlogk) space, where ρmax denotes the maximum possible gap-ratio of any k parallel slabs that cover P. Using linear space, the running times only slightly increase to O(ρkknlogn) and O(ρmaxkknlogn).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信