Chaeyoon Chung , Taehoon Ahn , Sang Won Bae , Hee-Kap Ahn
{"title":"Parallel line centers with guaranteed separation","authors":"Chaeyoon Chung , Taehoon Ahn , Sang Won Bae , Hee-Kap Ahn","doi":"10.1016/j.comgeo.2025.102185","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set <em>P</em> of <em>n</em> points in the plane and an integer <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>k</em>-line-center problem asks <em>k</em> slabs whose union covers <em>P</em> that minimizes the maximum width of the <em>k</em> slabs. In this paper, we introduce a new variant of the <em>k</em>-line-center problem for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, in which the resulting <em>k</em> lines are parallel and a prescribed separation between two line centers is guaranteed. More precisely, we define a measure of separation, namely the gap-ratio of <em>k</em> parallel slabs, to be the minimum distance between any two slabs, divided by the width of the smallest slab enclosing the <em>k</em> slabs. We present efficient algorithms for the following problems: (1) Given a real <span><math><mn>0</mn><mo><</mo><mi>ρ</mi><mo>≤</mo><mn>1</mn></math></span>, compute <em>k</em> parallel slabs of minimum width that cover <em>P</em> with gap-ratio at least <em>ρ</em>. (2) Compute <em>k</em> parallel slabs that cover <em>P</em> with maximum possible gap-ratio. Our algorithms run in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>+</mo><mi>k</mi><mi>n</mi><mo>)</mo><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>max</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msubsup><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>+</mo><mi>k</mi><mi>n</mi><mo>)</mo><mo>)</mo></math></span> time, respectively, using <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo></mo><mi>k</mi><mo>)</mo></math></span> space, where <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> denotes the maximum possible gap-ratio of any <em>k</em> parallel slabs that cover <em>P</em>. Using linear space, the running times only slightly increase to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup><mo>⋅</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>max</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msubsup><mo>⋅</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102185"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000239","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a set P of n points in the plane and an integer , the k-line-center problem asks k slabs whose union covers P that minimizes the maximum width of the k slabs. In this paper, we introduce a new variant of the k-line-center problem for , in which the resulting k lines are parallel and a prescribed separation between two line centers is guaranteed. More precisely, we define a measure of separation, namely the gap-ratio of k parallel slabs, to be the minimum distance between any two slabs, divided by the width of the smallest slab enclosing the k slabs. We present efficient algorithms for the following problems: (1) Given a real , compute k parallel slabs of minimum width that cover P with gap-ratio at least ρ. (2) Compute k parallel slabs that cover P with maximum possible gap-ratio. Our algorithms run in and time, respectively, using space, where denotes the maximum possible gap-ratio of any k parallel slabs that cover P. Using linear space, the running times only slightly increase to and .
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.