Mechanical properties, corrosion resistance and microstructural analysis of recycled aggregate concrete made with ceramic wall waste and ultrafine ceria

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ansam Ali Hashim , Rana Anaee , Mohammed Salah Nasr , Ali Shubbar , Turki S. Alahmari
{"title":"Mechanical properties, corrosion resistance and microstructural analysis of recycled aggregate concrete made with ceramic wall waste and ultrafine ceria","authors":"Ansam Ali Hashim ,&nbsp;Rana Anaee ,&nbsp;Mohammed Salah Nasr ,&nbsp;Ali Shubbar ,&nbsp;Turki S. Alahmari","doi":"10.1016/j.jmrt.2025.03.154","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines how incorporating ultrafine cerium dioxide particles (UFCe) into recycled coarse aggregate concrete affects its physical, mechanical, and long-term properties. No analogous research exists about the impact of ultrafine cerium dioxide particles on various characteristics of concrete containing recycled aggregates (RCA). UFCe was employed, and its mean particle size was 350 nm in different doses (0.0, 0.5, 1.0, and 1.5 % by cement weight) to explore its effect on the properties of concrete containing 25 % coarse aggregates (RCA) prepared from ceramic wall waste. The setting time, slump flow, porosity, water absorption, compressive and tensile strengths, electrical resistance, chloride penetration resistance, corrosion resistance, and microstructure analysis were investigated. The findings indicated that UFCe significantly enhanced the compressive and tensile strength while decreasing water absorption and pore ratio comparison to the control mixture after 90 days of curing. Moreover, all mixtures displayed significantly lower chloride penetration depth and corrosion rate than the reference mixture. The inclusion of UFCe additionally improved the microstructure due to the enhancement of the ultrafine particle hydration process. On the other hand, the optimum improvement of mechanical strength, durability properties, and microstructure was recorded at a UFCe replacement rate of 0.5 %. For example, the compressive and tensile strengths increased by 33 % and 9 %, respectively, while the total water absorption and migration coefficient were reduced by 42 % and 67 % at 90 days, respectively, compared with the reference sample.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"36 ","pages":"Pages 627-640"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425006647","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines how incorporating ultrafine cerium dioxide particles (UFCe) into recycled coarse aggregate concrete affects its physical, mechanical, and long-term properties. No analogous research exists about the impact of ultrafine cerium dioxide particles on various characteristics of concrete containing recycled aggregates (RCA). UFCe was employed, and its mean particle size was 350 nm in different doses (0.0, 0.5, 1.0, and 1.5 % by cement weight) to explore its effect on the properties of concrete containing 25 % coarse aggregates (RCA) prepared from ceramic wall waste. The setting time, slump flow, porosity, water absorption, compressive and tensile strengths, electrical resistance, chloride penetration resistance, corrosion resistance, and microstructure analysis were investigated. The findings indicated that UFCe significantly enhanced the compressive and tensile strength while decreasing water absorption and pore ratio comparison to the control mixture after 90 days of curing. Moreover, all mixtures displayed significantly lower chloride penetration depth and corrosion rate than the reference mixture. The inclusion of UFCe additionally improved the microstructure due to the enhancement of the ultrafine particle hydration process. On the other hand, the optimum improvement of mechanical strength, durability properties, and microstructure was recorded at a UFCe replacement rate of 0.5 %. For example, the compressive and tensile strengths increased by 33 % and 9 %, respectively, while the total water absorption and migration coefficient were reduced by 42 % and 67 % at 90 days, respectively, compared with the reference sample.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信