{"title":"Strengthening incomplete multi-view clustering: An attention contrastive learning method","authors":"Shudong Hou, Lanlan Guo, Xu Wei","doi":"10.1016/j.imavis.2025.105493","DOIUrl":null,"url":null,"abstract":"<div><div>Incomplete multi-view clustering presents greater challenges than traditional multi-view clustering. In recent years, significant progress has been made in this field, multi-view clustering relies on the consistency and integrity of views to ensure the accurate transmission of data information. However, during the process of data collection and transmission, data loss is inevitable, leading to partial view loss and increasing the difficulty of joint learning on incomplete multi-view data. To address this issue, we propose a multi-view contrastive learning framework based on the attention mechanism. Previous contrastive learning mainly focused on the relationships between isolated sample pairs, which limited the robustness of the method. Our method selects positive samples from both global and local perspectives by utilizing the nearest neighbor graph to maximize the correlation between local features and latent features of each view. Additionally, we use a cross-view encoder network with self-attention structure to fuse the low dimensional representations of each view into a joint representation, and guide the learning of the joint representation through a high confidence structure. Furthermore, we introduce graph constraint learning to explore potential neighbor relationships among instances to facilitate data reconstruction. The experimental results on six multi-view datasets demonstrate that our method exhibits significant effectiveness and superiority compared to existing methods.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"157 ","pages":"Article 105493"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000812","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Incomplete multi-view clustering presents greater challenges than traditional multi-view clustering. In recent years, significant progress has been made in this field, multi-view clustering relies on the consistency and integrity of views to ensure the accurate transmission of data information. However, during the process of data collection and transmission, data loss is inevitable, leading to partial view loss and increasing the difficulty of joint learning on incomplete multi-view data. To address this issue, we propose a multi-view contrastive learning framework based on the attention mechanism. Previous contrastive learning mainly focused on the relationships between isolated sample pairs, which limited the robustness of the method. Our method selects positive samples from both global and local perspectives by utilizing the nearest neighbor graph to maximize the correlation between local features and latent features of each view. Additionally, we use a cross-view encoder network with self-attention structure to fuse the low dimensional representations of each view into a joint representation, and guide the learning of the joint representation through a high confidence structure. Furthermore, we introduce graph constraint learning to explore potential neighbor relationships among instances to facilitate data reconstruction. The experimental results on six multi-view datasets demonstrate that our method exhibits significant effectiveness and superiority compared to existing methods.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.