Stability of a Generalized Linear Weingarten Spacelike Hypersurface in Robertson–Walker Spacetimes

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Hyelim Han
{"title":"Stability of a Generalized Linear Weingarten Spacelike Hypersurface in Robertson–Walker Spacetimes","authors":"Hyelim Han","doi":"10.1016/S0034-4877(25)00013-8","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study the variational problem of maximizing a certain linear combination of area functionals of a closed generalized linear Weingarten spacelike hypersurface <em>M<sup>n</sup></em> immersed in a foliated spacetime \n\t\t\t\t<span><math><mrow><msubsup><mover><mi>M</mi><mo>~</mo></mover><mn>1</mn><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow></math></span>. Given a Robertson-Walker spacetime \n\t\t\t\t<span><math><mrow><msubsup><mover><mi>M</mi><mo>~</mo></mover><mn>1</mn><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>=</mo><mi>I</mi><msub><mo>×</mo><mi>ϕ</mi></msub><msup><mi>F</mi><mi>n</mi></msup></mrow></math></span>, we exhibit conditions on <em>M<sup>n</sup></em> which guarantee that (strong) stability is necessary and sufficient for <em>M<sup>n</sup></em> to be totally umbilic. Under a suitable restriction on <em>M<sup>n</sup></em>, we also prove that if a closed generalized linear Weingarten spacelike hypersurface in \n\t\t\t\t<span><math><mrow><msubsup><mi>S</mi><mn>1</mn><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow></math></span> is (strongly) stable, then it must be a totally umbilic round sphere.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"95 1","pages":"Pages 111-128"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487725000138","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the variational problem of maximizing a certain linear combination of area functionals of a closed generalized linear Weingarten spacelike hypersurface Mn immersed in a foliated spacetime M~1n+1. Given a Robertson-Walker spacetime M~1n+1(c)=I×ϕFn, we exhibit conditions on Mn which guarantee that (strong) stability is necessary and sufficient for Mn to be totally umbilic. Under a suitable restriction on Mn, we also prove that if a closed generalized linear Weingarten spacelike hypersurface in S1n+1 is (strongly) stable, then it must be a totally umbilic round sphere.
Robertson-Walker时空中广义线性Weingarten类空间超曲面的稳定性
本文研究了叶状时空M~1n+1中一个封闭广义线性Weingarten类空间超曲面Mn的面积泛函线性组合最大化的变分问题。在给定Robertson-Walker时空M~1n+1(c)=I×ϕFn的条件下,我们给出了Mn的强稳定性是保证Mn完全稳定的充分必要条件。在Mn的适当约束下,证明了S1n+1中的闭广义线性Weingarten类空间超曲面是(强)稳定的,则它一定是一个完全脐圆球面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信