{"title":"Radon-Nikodým theorems for generalized fuzzy number measures","authors":"Sokol Bush Kaliaj","doi":"10.1016/j.fss.2025.109380","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we deal with generalized fuzzy number measures defined on Σ and taking values in the set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, where <span><math><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Σ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></math></span> is a complete finite measure space, <span><math><mi>c</mi><mi>w</mi><mi>k</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the family of all non-empty convex weakly compact subsets of a Banach space <em>X</em> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is such that a fuzzy set <span><math><mi>u</mi><mo>:</mo><mi>X</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is a member of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> if and only if<span><span><span><math><mrow><msup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>∈</mo><mi>c</mi><mi>w</mi><mi>k</mi><mo>(</mo><mi>X</mi><mo>)</mo><mspace></mspace><mtext> for all </mtext><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mspace></mspace><mo>(</mo><msup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>α</mi><mo>}</mo><mo>)</mo><mo>.</mo></mrow></math></span></span></span> We show two Radon-Nikodým theorems for such generalized fuzzy number measures in terms of Pettis integral of fuzzy mappings. The first theorem works for a <em>μ</em>-continuous generalized fuzzy number measure <span><math><mi>M</mi><mo>:</mo><mi>Σ</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of bounded variation in a Banach space <em>X</em> with the Radon-Nikodým property (RNP). The next theorem shows that if a generalized fuzzy number measure <span><math><mi>M</mi><mo>:</mo><mi>Σ</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is “dominated” by a generalized fuzzy number <span><math><mi>Q</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> in terms of <em>α</em>-level sets, i.e.,<span><span><span><math><mrow><msup><mrow><mo>[</mo><mi>M</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>⊂</mo><mi>μ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msup><mrow><mo>[</mo><mi>Q</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mtext> for all </mtext><mi>A</mi><mo>∈</mo><mi>Σ</mi><mo>,</mo><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>,</mo></mrow></math></span></span></span> then there exists a fuzzy mapping <span><math><mi>Γ</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> Pettis integrable with <span><math><mi>M</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>F</mi><mi>P</mi><mo>)</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>A</mi></mrow></msub><mi>Γ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>μ</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>Σ</mi></math></span>, where <span><math><mo>(</mo><mi>F</mi><mi>P</mi><mo>)</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>A</mi></mrow></msub><mi>Γ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>μ</mi></math></span> is Pettis integral of fuzzy mapping Γ over <em>A</em>. The main advantage of our results is the absence of any separability assumptions.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"512 ","pages":"Article 109380"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425001198","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we deal with generalized fuzzy number measures defined on Σ and taking values in the set , where is a complete finite measure space, is the family of all non-empty convex weakly compact subsets of a Banach space X and is such that a fuzzy set is a member of if and only if We show two Radon-Nikodým theorems for such generalized fuzzy number measures in terms of Pettis integral of fuzzy mappings. The first theorem works for a μ-continuous generalized fuzzy number measure of bounded variation in a Banach space X with the Radon-Nikodým property (RNP). The next theorem shows that if a generalized fuzzy number measure is “dominated” by a generalized fuzzy number in terms of α-level sets, i.e., then there exists a fuzzy mapping Pettis integrable with for all , where is Pettis integral of fuzzy mapping Γ over A. The main advantage of our results is the absence of any separability assumptions.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.