{"title":"Manifold-valued models for analysis of EEG time series data","authors":"Tao Ding , Tom M.W. Nye , Yujiang Wang","doi":"10.1016/j.csda.2025.108168","DOIUrl":null,"url":null,"abstract":"<div><div>EEG (electroencephalogram) records brain electrical activity and is a vital clinical tool in the diagnosis and treatment of epilepsy. Time series of covariance matrices between EEG channels for patients suffering from epilepsy, obtained from an open-source dataset, are analysed. The aim is two-fold: to develop a model with interpretable parameters for different possible modes of EEG dynamics, and to explore the extent to which modelling results are affected by the choice of geometry imposed on the space of covariance matrices. The space of full-rank covariance matrices of fixed dimension forms a smooth manifold, and any statistical analysis inherently depends on the choice of metric or Riemannian structure on this manifold. The model specifies a distribution for the tangent direction vector at any time point, combining an autoregressive term, a mean reverting term and a form of Gaussian noise. Parameter inference is performed by maximum likelihood estimation, and we compare modelling results obtained using the standard Euclidean geometry and the affine invariant geometry on covariance matrices. The findings reveal distinct dynamics between epileptic seizures and interictal periods (between seizures), with interictal series characterized by strong mean reversion and absence of autoregression, while seizures exhibit significant autoregressive components with weaker mean reversion. The fitted models are also used to measure seizure dissimilarity within and between patients.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108168"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000441","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
EEG (electroencephalogram) records brain electrical activity and is a vital clinical tool in the diagnosis and treatment of epilepsy. Time series of covariance matrices between EEG channels for patients suffering from epilepsy, obtained from an open-source dataset, are analysed. The aim is two-fold: to develop a model with interpretable parameters for different possible modes of EEG dynamics, and to explore the extent to which modelling results are affected by the choice of geometry imposed on the space of covariance matrices. The space of full-rank covariance matrices of fixed dimension forms a smooth manifold, and any statistical analysis inherently depends on the choice of metric or Riemannian structure on this manifold. The model specifies a distribution for the tangent direction vector at any time point, combining an autoregressive term, a mean reverting term and a form of Gaussian noise. Parameter inference is performed by maximum likelihood estimation, and we compare modelling results obtained using the standard Euclidean geometry and the affine invariant geometry on covariance matrices. The findings reveal distinct dynamics between epileptic seizures and interictal periods (between seizures), with interictal series characterized by strong mean reversion and absence of autoregression, while seizures exhibit significant autoregressive components with weaker mean reversion. The fitted models are also used to measure seizure dissimilarity within and between patients.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]