Effect of sub-freezing temperatures on ballast strength: A laboratory study

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Coleman Froehlke, Marcus Dersch, Riley Edwards, Arthur de O. Lima, Erol Tutumluer
{"title":"Effect of sub-freezing temperatures on ballast strength: A laboratory study","authors":"Coleman Froehlke,&nbsp;Marcus Dersch,&nbsp;Riley Edwards,&nbsp;Arthur de O. Lima,&nbsp;Erol Tutumluer","doi":"10.1016/j.trgeo.2025.101551","DOIUrl":null,"url":null,"abstract":"<div><div>Ice formation within the ballast layer of railroad track is common in regions that experience consistent temperatures below the freezing point of water. Freely draining ballast cannot retain as much moisture as saturated fouled ballast, which may develop ice-bonded particles depending on the nature of fouling material and moisture present. This paper quantifies and compares the effect of sub-freezing [-17 ± 5°C (0 ± 10°F)] temperatures on ballast strength to non-frozen [21 ± 5°C (70 ± 10°F)] conditions. Ballast specimens were tested in a large-scale direct shear apparatus at gravimetric moisture contents, ranging from 0 % to 12 % of the dry weight of fine material [smaller than 9.5 mm (3/8-in.)], and fouling index (FI) levels ranging from 0 to 40. In non-frozen conditions, addition of moisture and fouling typically reduces the shear strength of ballast, whereas the presence of fouling and absence of moisture typically increases the strength. In a frozen condition, however, the presence of moisture and fouling increased the strength of the ballast due to ice-bonding within the ballast matrix. An increased moisture content yielded higher strengths of moderately and heavily fouled specimens in a nonlinear fashion. Non-fouled samples reduced strength due to less ice-bonding. Interestingly, higher fouling levels nonuniformly changed the strength of the ballast depending upon whether mechanical friction and aggregate interlock or ice-bonding of fine material generated higher strength. Ballast resistance is a key parameter for quantifying the stress state present within the rail, thus requiring accurate assessment of ballast strength in a multitude of environments.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"52 ","pages":"Article 101551"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000704","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Ice formation within the ballast layer of railroad track is common in regions that experience consistent temperatures below the freezing point of water. Freely draining ballast cannot retain as much moisture as saturated fouled ballast, which may develop ice-bonded particles depending on the nature of fouling material and moisture present. This paper quantifies and compares the effect of sub-freezing [-17 ± 5°C (0 ± 10°F)] temperatures on ballast strength to non-frozen [21 ± 5°C (70 ± 10°F)] conditions. Ballast specimens were tested in a large-scale direct shear apparatus at gravimetric moisture contents, ranging from 0 % to 12 % of the dry weight of fine material [smaller than 9.5 mm (3/8-in.)], and fouling index (FI) levels ranging from 0 to 40. In non-frozen conditions, addition of moisture and fouling typically reduces the shear strength of ballast, whereas the presence of fouling and absence of moisture typically increases the strength. In a frozen condition, however, the presence of moisture and fouling increased the strength of the ballast due to ice-bonding within the ballast matrix. An increased moisture content yielded higher strengths of moderately and heavily fouled specimens in a nonlinear fashion. Non-fouled samples reduced strength due to less ice-bonding. Interestingly, higher fouling levels nonuniformly changed the strength of the ballast depending upon whether mechanical friction and aggregate interlock or ice-bonding of fine material generated higher strength. Ballast resistance is a key parameter for quantifying the stress state present within the rail, thus requiring accurate assessment of ballast strength in a multitude of environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信