Beyond Hamming Distance: Exploring spatial encoding in perceptual hashes

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sean McKeown
{"title":"Beyond Hamming Distance: Exploring spatial encoding in perceptual hashes","authors":"Sean McKeown","doi":"10.1016/j.fsidi.2025.301878","DOIUrl":null,"url":null,"abstract":"<div><div>Forensic analysts are often tasked with analysing large volumes of data in modern investigations, and frequently make use of hashing technologies to identify previously encountered images. Perceptual hashes, which seek to model the semantic (visual) content of images, are typically compared by way of Normalised Hamming Distance, counting the ratio of bits which differ between two hashes. However, this global measure of difference may overlook structural information, such as the position and relative clustering of these differences. This paper investigates the relationship between localised/positional changes in an image and the extent to which this information is encoded in various perceptual hashes. Our findings indicate that the relative position of bits in the hash does encode useful information. Consequently, we prototype and evaluate three alternative perceptual hashing distance metrics: Normalised Convolution Distance, Hatched Matrix Distance, and 2-D Ngram Cosine Distance. Results demonstrate that there is room for improvement over Hamming Distance. In particular, the worst-case image mirroring transform for DCT-based hashes can be completely mitigated without needing to change the mechanism for generating the hash. Indeed, perceived hash weaknesses may actually be deficits in the distance metric being used, and large-scale providers could potentially benefit from modifying their approach.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"52 ","pages":"Article 301878"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725000174","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Forensic analysts are often tasked with analysing large volumes of data in modern investigations, and frequently make use of hashing technologies to identify previously encountered images. Perceptual hashes, which seek to model the semantic (visual) content of images, are typically compared by way of Normalised Hamming Distance, counting the ratio of bits which differ between two hashes. However, this global measure of difference may overlook structural information, such as the position and relative clustering of these differences. This paper investigates the relationship between localised/positional changes in an image and the extent to which this information is encoded in various perceptual hashes. Our findings indicate that the relative position of bits in the hash does encode useful information. Consequently, we prototype and evaluate three alternative perceptual hashing distance metrics: Normalised Convolution Distance, Hatched Matrix Distance, and 2-D Ngram Cosine Distance. Results demonstrate that there is room for improvement over Hamming Distance. In particular, the worst-case image mirroring transform for DCT-based hashes can be completely mitigated without needing to change the mechanism for generating the hash. Indeed, perceived hash weaknesses may actually be deficits in the distance metric being used, and large-scale providers could potentially benefit from modifying their approach.
超越汉明距离:探索知觉哈希的空间编码
在现代调查中,法医分析师经常负责分析大量数据,并经常使用散列技术来识别以前遇到的图像。感知哈希,寻求对图像的语义(视觉)内容建模,通常通过标准化汉明距离的方式进行比较,计算两个哈希之间不同的比特的比例。然而,这种差异的全局度量可能忽略了结构信息,例如这些差异的位置和相对聚类。本文研究了图像中局部/位置变化与该信息在各种感知哈希中编码的程度之间的关系。我们的发现表明,哈希中比特的相对位置确实编码了有用的信息。因此,我们原型化并评估了三种可选的感知哈希距离度量:归一化卷积距离、孵化矩阵距离和二维Ngram余弦距离。结果表明,在汉明距离上有改进的余地。特别是,对于基于dct的哈希,可以完全减轻最坏情况下的映像镜像转换,而无需更改生成哈希的机制。事实上,感知到的哈希弱点实际上可能是正在使用的距离度量的缺陷,大型提供商可能会从修改他们的方法中获益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信