Forensic analysis of Telegram Messenger on iOS smartphones

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lukas Jaeckel, Michael Spranger, Dirk Labudde
{"title":"Forensic analysis of Telegram Messenger on iOS smartphones","authors":"Lukas Jaeckel,&nbsp;Michael Spranger,&nbsp;Dirk Labudde","doi":"10.1016/j.fsidi.2025.301866","DOIUrl":null,"url":null,"abstract":"<div><div>As mobile messengers have dominated and penetrated our daily communication and activities, the odds of them being involved in criminal activities have increased. Since each messenger usually uses its own proprietary data schema (including encoding, encryption and frequent updates) to store communication data, with a pressing demand, investigative authorities require a solution to transfer the data in a processable structure to analyse it efficiently, especially in a forensic context. Therefore, this work identifies and examines locally stored data of the Telegram Messenger with high forensic value on iOS devices. In particular, this work deals with extracting contact and communication data to link and analyse it. For this purpose, artificially generated test data, as well as the open source code of the Telegram Messenger under iOS, are analysed. The main focus of this work lies on the primary database in which a large part of data is coded and, therefore, needs to be transferred into an interpretable form. In summary, this work enables a manual or automated analysis of Messenger data for investigative authorities and IT companies with forensic reference. The proposed method can also be adapted in research to analyse further instant messaging services.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"52 ","pages":"Article 301866"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725000058","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As mobile messengers have dominated and penetrated our daily communication and activities, the odds of them being involved in criminal activities have increased. Since each messenger usually uses its own proprietary data schema (including encoding, encryption and frequent updates) to store communication data, with a pressing demand, investigative authorities require a solution to transfer the data in a processable structure to analyse it efficiently, especially in a forensic context. Therefore, this work identifies and examines locally stored data of the Telegram Messenger with high forensic value on iOS devices. In particular, this work deals with extracting contact and communication data to link and analyse it. For this purpose, artificially generated test data, as well as the open source code of the Telegram Messenger under iOS, are analysed. The main focus of this work lies on the primary database in which a large part of data is coded and, therefore, needs to be transferred into an interpretable form. In summary, this work enables a manual or automated analysis of Messenger data for investigative authorities and IT companies with forensic reference. The proposed method can also be adapted in research to analyse further instant messaging services.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信