SOLVE-IT: A proposed digital forensic knowledge base inspired by MITRE ATT&CK

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Christopher Hargreaves , Harm van Beek , Eoghan Casey
{"title":"SOLVE-IT: A proposed digital forensic knowledge base inspired by MITRE ATT&CK","authors":"Christopher Hargreaves ,&nbsp;Harm van Beek ,&nbsp;Eoghan Casey","doi":"10.1016/j.fsidi.2025.301864","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents SOLVE-IT (Systematic Objective-based Listing of Various Established (Digital) Investigation Techniques), a digital forensics knowledge base inspired by the MITRE ATT&amp;CK cybersecurity resource. Several applications of the knowledge-base are demonstrated: strengthening tool testing by scoping error-focused data sets for a technique, reinforcing digital forensic techniques by cataloguing available mitigations for weaknesses (a systematic approach to performing Error Mitigation Analysis), bolstering quality assurance by identifying potential weaknesses in a specific digital forensic investigation or standard processes, structured consideration of potential uses of AI in digital forensics, augmenting automation by highlighting relevant CASE ontology classes and identifying ontology gaps, and prioritizing innovation by identifying academic research opportunities. The paper provides the structure and partial implementation of a knowledge base that includes an organised set of 104 digital forensic techniques, organised over 17 objectives, with detailed descriptions, errors, and mitigations provided for 33 of them. The knowledge base is hosted on an open platform (GitHub) to allow crowdsourced contributions to evolve the contents. Tools are also provided to export the machine readable back-end data into usable formats such as spreadsheets to support many applications, including systematic error mitigation and quality assurance documentation.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"52 ","pages":"Article 301864"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725000034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents SOLVE-IT (Systematic Objective-based Listing of Various Established (Digital) Investigation Techniques), a digital forensics knowledge base inspired by the MITRE ATT&CK cybersecurity resource. Several applications of the knowledge-base are demonstrated: strengthening tool testing by scoping error-focused data sets for a technique, reinforcing digital forensic techniques by cataloguing available mitigations for weaknesses (a systematic approach to performing Error Mitigation Analysis), bolstering quality assurance by identifying potential weaknesses in a specific digital forensic investigation or standard processes, structured consideration of potential uses of AI in digital forensics, augmenting automation by highlighting relevant CASE ontology classes and identifying ontology gaps, and prioritizing innovation by identifying academic research opportunities. The paper provides the structure and partial implementation of a knowledge base that includes an organised set of 104 digital forensic techniques, organised over 17 objectives, with detailed descriptions, errors, and mitigations provided for 33 of them. The knowledge base is hosted on an open platform (GitHub) to allow crowdsourced contributions to evolve the contents. Tools are also provided to export the machine readable back-end data into usable formats such as spreadsheets to support many applications, including systematic error mitigation and quality assurance documentation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信