Rodrigo M. Tanasovici, Fernando Z. Gibran, Gustavo M. Dias
{"title":"The proximity to marine infrastructure affects fish diversity, the occurrence of non-indigenous species, and the dynamic of the sessile communities","authors":"Rodrigo M. Tanasovici, Fernando Z. Gibran, Gustavo M. Dias","doi":"10.1016/j.marenvres.2025.107086","DOIUrl":null,"url":null,"abstract":"<div><div>Marine urbanization is changing coastal ecosystems. In this study, we examined how the proximity to recreational marinas influences the structure and recruitment of the sessile community, the diversity of fish, and predation pressure. Sessile communities on marinas supported 68 % more non-indigenous species than those farther from marine infrastructure. Conversely, native species occupied more space in natural habitats, where the diversity of fish was greater. Predation did not influence the diversity or structure of the sessile community, regardless of the habitat type. Nevertheless, predation pressure may be underestimated in artificial habitats due to the lack of connection between platforms and the seafloor. Sessile recruitment tended to be more abundant in artificial habitats. Our findings indicate that even when substrate composition, orientation, and connectivity to the seabed are standardized, proximity to marine infrastructure increases the prevalence of non-indigenous sessile species and diminishes the diversity of potential predatory fish, thereby altering the dynamics of sessile communities.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"207 ","pages":"Article 107086"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113625001436","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Marine urbanization is changing coastal ecosystems. In this study, we examined how the proximity to recreational marinas influences the structure and recruitment of the sessile community, the diversity of fish, and predation pressure. Sessile communities on marinas supported 68 % more non-indigenous species than those farther from marine infrastructure. Conversely, native species occupied more space in natural habitats, where the diversity of fish was greater. Predation did not influence the diversity or structure of the sessile community, regardless of the habitat type. Nevertheless, predation pressure may be underestimated in artificial habitats due to the lack of connection between platforms and the seafloor. Sessile recruitment tended to be more abundant in artificial habitats. Our findings indicate that even when substrate composition, orientation, and connectivity to the seabed are standardized, proximity to marine infrastructure increases the prevalence of non-indigenous sessile species and diminishes the diversity of potential predatory fish, thereby altering the dynamics of sessile communities.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.