Irradiance sensorless PSO-based Integral Backstepping and Immersion & invariance algorithm for robust MPPT control with real-climatic microcontroller-in-the-loop experimental validation
IF 4 3区 计算机科学Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jian Chen , Ambe Harrison , Njimboh Henry Alombah , Wulfran Fendzi Mbasso , Reagan Jean Jacques MOLU , Abdullah M Alharbi , Pradeep Jangir
{"title":"Irradiance sensorless PSO-based Integral Backstepping and Immersion & invariance algorithm for robust MPPT control with real-climatic microcontroller-in-the-loop experimental validation","authors":"Jian Chen , Ambe Harrison , Njimboh Henry Alombah , Wulfran Fendzi Mbasso , Reagan Jean Jacques MOLU , Abdullah M Alharbi , Pradeep Jangir","doi":"10.1016/j.compeleceng.2025.110279","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel irradiance sensorless Maximum Power Point Tracking (MPPT) controller for photovoltaic (PV) systems using a Particle Swarm Optimization (PSO)-based Integral Backstepping (IBSC) and Immersion & Invariance (I&I) algorithm. The proposed controller addresses the limitations of traditional and contemporary MPPT methods, such as the need for costly irradiance sensors and suboptimal performance under dynamic environmental conditions. The integration of a higher-order sliding mode differentiator (HOSMD) with the IBSC enhances transient response by completely eliminating overshoots, achieving a 0 % overshoot compared to 4.8 % with the conventional IBSC under standard test conditions. The system exhibits rapid tracking convergence with a significantly reduced tracking time of 0.4 ms, approximately seven times faster than the traditional Perturb and Observe (P&O) algorithm's 3 ms. Under real-world conditions, the proposed system's irradiance estimator maintains a mean absolute error below 15 W/m², with a maximum error of 69 W/m² at high irradiance levels. The system achieves an operating efficiency of 99.99 % with peak-to-peak power ripples of just 0.17 % under standard conditions, outperforming eight state-of-the-art MPPT techniques. This robust and efficient MPPT solution is validated through extensive simulations and real-climatic conditions. Additionally, real-climatic experimental implementations are carried out using Microcontroller-in-the-loop (MIL) integration. The acquired experimental results do not only corroborate the simulation outcomes but also endorses the reliability and practical robustness of the proposed MPPT controller</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110279"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625002228","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel irradiance sensorless Maximum Power Point Tracking (MPPT) controller for photovoltaic (PV) systems using a Particle Swarm Optimization (PSO)-based Integral Backstepping (IBSC) and Immersion & Invariance (I&I) algorithm. The proposed controller addresses the limitations of traditional and contemporary MPPT methods, such as the need for costly irradiance sensors and suboptimal performance under dynamic environmental conditions. The integration of a higher-order sliding mode differentiator (HOSMD) with the IBSC enhances transient response by completely eliminating overshoots, achieving a 0 % overshoot compared to 4.8 % with the conventional IBSC under standard test conditions. The system exhibits rapid tracking convergence with a significantly reduced tracking time of 0.4 ms, approximately seven times faster than the traditional Perturb and Observe (P&O) algorithm's 3 ms. Under real-world conditions, the proposed system's irradiance estimator maintains a mean absolute error below 15 W/m², with a maximum error of 69 W/m² at high irradiance levels. The system achieves an operating efficiency of 99.99 % with peak-to-peak power ripples of just 0.17 % under standard conditions, outperforming eight state-of-the-art MPPT techniques. This robust and efficient MPPT solution is validated through extensive simulations and real-climatic conditions. Additionally, real-climatic experimental implementations are carried out using Microcontroller-in-the-loop (MIL) integration. The acquired experimental results do not only corroborate the simulation outcomes but also endorses the reliability and practical robustness of the proposed MPPT controller
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.