Oceanic biophysical response to large-scale wind forcing observed southwest of Sumatra during December 2017

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY
Takanori Horii , Iwao Ueki , Kelvin J. Richards , Qoosaku Moteki , Kentaro Ando , Kazuhiko Matsumoto
{"title":"Oceanic biophysical response to large-scale wind forcing observed southwest of Sumatra during December 2017","authors":"Takanori Horii ,&nbsp;Iwao Ueki ,&nbsp;Kelvin J. Richards ,&nbsp;Qoosaku Moteki ,&nbsp;Kentaro Ando ,&nbsp;Kazuhiko Matsumoto","doi":"10.1016/j.dsr2.2025.105479","DOIUrl":null,"url":null,"abstract":"<div><div>The water southwest of Sumatra is characterized by the seasonal and interannual occurrence of coastal upwelling, which drives biological variability and active fisheries. Although satellite observations show active biophysical variability at the surface, no observations of surface–subsurface physical and biogeochemical variations were available. Based on a field experiment conducted southwest of Sumatra (4.2°S, 101.5°E) by the research vessel <em>Mirai</em> from December 5, 2017 to January 1, 2018, this study reports observational results for ocean temperature, salinity, nutrients, and biological variations. During the observation period, westerly winds dominated the eastern equatorial Indian Ocean, with northwesterly winds southwest of Sumatra. This wind forcing was unfavorable for local coastal upwelling. Time series of <em>in situ</em> observations indicated gradual shoaling of the thermocline from mid-to late December 2017. This thermocline displacement was attributed to the propagation of equatorial and coastal Kelvin waves in response to the appearance of easterly winds (weakening of westerly winds) in the central (eastern) equatorial Indian Ocean. Concurrent with thermocline shoaling, we observed active mixing at the top of the thermocline, upward transport of nutrients to the euphotic layer, and subsurface phytoplankton growth. These biophysical responses demonstrate that even if local wind forcing is unfavorable for coastal upwelling, remote wind forcing can affect the nutrient supply that supports biological activity off Sumatra through Kelvin wave propagation. These results will provide fundamental data for validating biophysical models of the eastern Indian Ocean.</div></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"221 ","pages":"Article 105479"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064525000281","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The water southwest of Sumatra is characterized by the seasonal and interannual occurrence of coastal upwelling, which drives biological variability and active fisheries. Although satellite observations show active biophysical variability at the surface, no observations of surface–subsurface physical and biogeochemical variations were available. Based on a field experiment conducted southwest of Sumatra (4.2°S, 101.5°E) by the research vessel Mirai from December 5, 2017 to January 1, 2018, this study reports observational results for ocean temperature, salinity, nutrients, and biological variations. During the observation period, westerly winds dominated the eastern equatorial Indian Ocean, with northwesterly winds southwest of Sumatra. This wind forcing was unfavorable for local coastal upwelling. Time series of in situ observations indicated gradual shoaling of the thermocline from mid-to late December 2017. This thermocline displacement was attributed to the propagation of equatorial and coastal Kelvin waves in response to the appearance of easterly winds (weakening of westerly winds) in the central (eastern) equatorial Indian Ocean. Concurrent with thermocline shoaling, we observed active mixing at the top of the thermocline, upward transport of nutrients to the euphotic layer, and subsurface phytoplankton growth. These biophysical responses demonstrate that even if local wind forcing is unfavorable for coastal upwelling, remote wind forcing can affect the nutrient supply that supports biological activity off Sumatra through Kelvin wave propagation. These results will provide fundamental data for validating biophysical models of the eastern Indian Ocean.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
16.70%
发文量
115
审稿时长
3 months
期刊介绍: Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信