Mechanochemical Reversible Complexation Mediated Polymerization Enabled Synthesis of Fluorinated Polyacrylate Copolymers for Room Temperature Solid-State Lithium Batteries

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Ziye Ren, Pan Mei, Chenyu Wang, Du Chen, Li Zhang, Wei Zhang*, Zhao Wang* and Zhengbiao Zhang*, 
{"title":"Mechanochemical Reversible Complexation Mediated Polymerization Enabled Synthesis of Fluorinated Polyacrylate Copolymers for Room Temperature Solid-State Lithium Batteries","authors":"Ziye Ren,&nbsp;Pan Mei,&nbsp;Chenyu Wang,&nbsp;Du Chen,&nbsp;Li Zhang,&nbsp;Wei Zhang*,&nbsp;Zhao Wang* and Zhengbiao Zhang*,&nbsp;","doi":"10.1021/acs.macromol.4c0298310.1021/acs.macromol.4c02983","DOIUrl":null,"url":null,"abstract":"<p >Solid polymer electrolytes (SPEs) have garnered significant interest in the advancement of solid-state lithium batteries (SSBs) due to their excellent safety, processability, and lightweight features. Currently, there is an urgent demand for the green synthesis of high performance SPEs for applications in SSBs. In this study, we report a one-pot mechanochemical reversible complexation mediated polymerization (mechano-RCMP) approach to synthesize fluorinated polyacrylates under solventless conditions. The mechano-RCMP approach demonstrated an efficient controlled polymerization process with quantitative monomer conversion through force induced activation of the carbon–iodine bond. The chain extension experiments confirmed the high chain-end functional groups of the polymers. Further copolymerization of heptafluorobutyl acrylate (HFBA) with butyl acrylate (BA) and methoxy polyethylene glycol acrylate (mPEG) resulted in the formation of P(BA-<i>co</i>-HFBA-<i>co</i>-mPEG), which demonstrated high thermal stability and amorphous characteristics. This copolymer film exhibited a wide electrochemical window (upper cutoff voltage up to 5.4 V) and high Li<sup>+</sup> conductivity (1.3 × 10<sup>–4</sup> S cm<sup>–1</sup> at 30 °C). SSBs fabricated with the P(BA-<i>co</i>-HFBA-<i>co</i>-mPEG) film showed good cycling performance, maintaining a capacity retention of 98% after 100 cycles at room temperature.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 6","pages":"3199–3207 3199–3207"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02983","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Solid polymer electrolytes (SPEs) have garnered significant interest in the advancement of solid-state lithium batteries (SSBs) due to their excellent safety, processability, and lightweight features. Currently, there is an urgent demand for the green synthesis of high performance SPEs for applications in SSBs. In this study, we report a one-pot mechanochemical reversible complexation mediated polymerization (mechano-RCMP) approach to synthesize fluorinated polyacrylates under solventless conditions. The mechano-RCMP approach demonstrated an efficient controlled polymerization process with quantitative monomer conversion through force induced activation of the carbon–iodine bond. The chain extension experiments confirmed the high chain-end functional groups of the polymers. Further copolymerization of heptafluorobutyl acrylate (HFBA) with butyl acrylate (BA) and methoxy polyethylene glycol acrylate (mPEG) resulted in the formation of P(BA-co-HFBA-co-mPEG), which demonstrated high thermal stability and amorphous characteristics. This copolymer film exhibited a wide electrochemical window (upper cutoff voltage up to 5.4 V) and high Li+ conductivity (1.3 × 10–4 S cm–1 at 30 °C). SSBs fabricated with the P(BA-co-HFBA-co-mPEG) film showed good cycling performance, maintaining a capacity retention of 98% after 100 cycles at room temperature.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信