Profit-based uncertainty estimation with application to credit scoring

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Yong Xu, Gang Kou, Daji Ergu
{"title":"Profit-based uncertainty estimation with application to credit scoring","authors":"Yong Xu, Gang Kou, Daji Ergu","doi":"10.1016/j.ejor.2025.03.007","DOIUrl":null,"url":null,"abstract":"Credit scoring is pivotal in financial risk management and has attracted significant research interest. While existing studies primarily concentrate on enhancing model predictive power and economic value, they often overlook the crucial aspect of predictive uncertainty, especially in the context of deep neural networks applied to credit scoring. This study addresses uncertainty estimation in credit scoring and evaluates three widely used uncertainty methods across various credit datasets. Additionally, guided by the maximum profit criterion, we propose two profit-based uncertainty metrics to assess profit uncertainties stemming from predictive uncertainty, specifically targeting class-dependent and instance-dependent cost scenarios. Subsequently, we develop a classification system with a rejection mechanism based on these metrics. Our approach aims to improve model profitability and reduce predictive uncertainty, specifically regarding model profit. Empirical results across several benchmark credit datasets indicate that our proposed framework outperforms existing methods in terms of increasing model profit in different credit-scoring scenarios. Furthermore, sensitivity analyses of varying cost parameter settings highlight the robustness of our framework.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"123 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.03.007","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Credit scoring is pivotal in financial risk management and has attracted significant research interest. While existing studies primarily concentrate on enhancing model predictive power and economic value, they often overlook the crucial aspect of predictive uncertainty, especially in the context of deep neural networks applied to credit scoring. This study addresses uncertainty estimation in credit scoring and evaluates three widely used uncertainty methods across various credit datasets. Additionally, guided by the maximum profit criterion, we propose two profit-based uncertainty metrics to assess profit uncertainties stemming from predictive uncertainty, specifically targeting class-dependent and instance-dependent cost scenarios. Subsequently, we develop a classification system with a rejection mechanism based on these metrics. Our approach aims to improve model profitability and reduce predictive uncertainty, specifically regarding model profit. Empirical results across several benchmark credit datasets indicate that our proposed framework outperforms existing methods in terms of increasing model profit in different credit-scoring scenarios. Furthermore, sensitivity analyses of varying cost parameter settings highlight the robustness of our framework.
基于利润的不确定性估计及其在信用评分中的应用
信用评分是金融风险管理的关键,引起了广泛的研究兴趣。虽然现有的研究主要集中在提高模型的预测能力和经济价值,但它们往往忽视了预测不确定性的关键方面,特别是在深度神经网络应用于信用评分的背景下。本研究解决了信用评分中的不确定性估计,并评估了三种广泛使用的不确定性方法在各种信用数据集。此外,在最大利润准则的指导下,我们提出了两个基于利润的不确定性度量来评估源于预测不确定性的利润不确定性,特别是针对类别依赖和实例依赖的成本情景。随后,我们根据这些指标开发了一个具有拒绝机制的分类系统。我们的方法旨在提高模型的盈利能力,减少预测的不确定性,特别是关于模型利润。几个基准信用数据集的实证结果表明,我们提出的框架在不同信用评分场景中增加模型利润方面优于现有方法。此外,对不同成本参数设置的敏感性分析突出了我们框架的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信