Service composition and optimal selection in cloud manufacturing under event-dependent distributional uncertainty of manufacturing capabilities

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Zunhao Luo, Dujuan Wang, Yunqiang Yin, Joshua Ignatius, T.C.E. Cheng
{"title":"Service composition and optimal selection in cloud manufacturing under event-dependent distributional uncertainty of manufacturing capabilities","authors":"Zunhao Luo, Dujuan Wang, Yunqiang Yin, Joshua Ignatius, T.C.E. Cheng","doi":"10.1016/j.ejor.2025.03.005","DOIUrl":null,"url":null,"abstract":"Service composition and optimal selection in cloud manufacturing involves the allocation of available manufacturing cloud services (MCSs) derived from a diverse array of manufacturing resources to satisfy personalized demand of customers. Existing studies generally neglect the uncertainty of manufacturing capabilities for providing MCSs. To this end, we use an event-dependent hybrid ambiguity set consisting of the box support set, Wasserstein metric, mean, and expected cross-deviation, where the support is conditional on each event, to capture the uncertainty of manufacturing capabilities, and cast the problem as a two-stage distributionally robust optimization model. We provide model bound analysis with theoretical gap guarantees, including the lower and upper bounds derived from the solution of the linear relaxation of the resulting reformulation, and sensitivity bounds for varying some ambiguity-set parameters. To exactly solve the reformulation, we design a customized constraint generation algorithm incorporating some improvement strategies, a variant of classical Benders decomposition, which decomposes the reformulation into a relaxed master problem and an adversarial separation subproblem which identifies valid constraints to tighten the relaxed master problem. Importantly, we transform the bilinear separation subproblem into a 0-1 mixed-integer linear program, observing the property that the linear-relaxed solution is integer, which makes the separation subproblem more easy to solve. Ultimately, we conduct numerical studies on the case study of a group enterprise producing large cement equipment in Tianjin, China, to evaluate the effectiveness of the solution algorithm, quantify the benefits of accounting for event-dependent distributional ambiguity over its single-event counterpart and stochastic and deterministic counterparts, and verify the value of considering the event-dependent hybrid ambiguity set over the Wasserstein and moment counterparts, and measure the quality of the upper and lower bounds and sensitivity bounds.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"35 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.03.005","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Service composition and optimal selection in cloud manufacturing involves the allocation of available manufacturing cloud services (MCSs) derived from a diverse array of manufacturing resources to satisfy personalized demand of customers. Existing studies generally neglect the uncertainty of manufacturing capabilities for providing MCSs. To this end, we use an event-dependent hybrid ambiguity set consisting of the box support set, Wasserstein metric, mean, and expected cross-deviation, where the support is conditional on each event, to capture the uncertainty of manufacturing capabilities, and cast the problem as a two-stage distributionally robust optimization model. We provide model bound analysis with theoretical gap guarantees, including the lower and upper bounds derived from the solution of the linear relaxation of the resulting reformulation, and sensitivity bounds for varying some ambiguity-set parameters. To exactly solve the reformulation, we design a customized constraint generation algorithm incorporating some improvement strategies, a variant of classical Benders decomposition, which decomposes the reformulation into a relaxed master problem and an adversarial separation subproblem which identifies valid constraints to tighten the relaxed master problem. Importantly, we transform the bilinear separation subproblem into a 0-1 mixed-integer linear program, observing the property that the linear-relaxed solution is integer, which makes the separation subproblem more easy to solve. Ultimately, we conduct numerical studies on the case study of a group enterprise producing large cement equipment in Tianjin, China, to evaluate the effectiveness of the solution algorithm, quantify the benefits of accounting for event-dependent distributional ambiguity over its single-event counterpart and stochastic and deterministic counterparts, and verify the value of considering the event-dependent hybrid ambiguity set over the Wasserstein and moment counterparts, and measure the quality of the upper and lower bounds and sensitivity bounds.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信