{"title":"Large language models open new way of AI-assisted molecule design for chemists","authors":"Shoichi Ishida, Tomohiro Sato, Teruki Honma, Kei Terayama","doi":"10.1186/s13321-025-00984-8","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS.</p><p><b>Scientific contribution</b></p><p>ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00984-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00984-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS.
Scientific contribution
ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.