{"title":"A disease-specific language model for variant pathogenicity in cardiac and regulatory genomics","authors":"Huixin Zhan, Jason H. Moore, Zijun Zhang","doi":"10.1038/s42256-025-01016-8","DOIUrl":null,"url":null,"abstract":"<p>Clinical variant classification of pathogenic versus benign genetic variants remains a challenge in genetics. Current genomic foundation models have enhanced variant effect prediction (VEP) accuracy through weakly supervised or unsupervised training, yet these models lack disease specificity. Here, to address this, we propose DYNA (disease-specificity fine-tuning via a Siamese neural network), broadly applicable to all genomic foundation models for more effective VEPs in disease contexts. We applied DYNA to the coding VEP in cardiovascular diseases and the non-coding VEP of RNA splicing regulation. These two tasks cover a wide range of specific disease–gene relationships and disease-causing regulatory mechanisms; therefore, their performance will inform the general utility of DYNA. In both cases, DYNA fine-tunes various pretrained genomic foundation models on small rare-variant sets. The DYNA fine-tuned models show superior performance in held-out rare-variant test sets and are further replicated in large, clinically relevant variant annotations in ClinVar. Importantly, we observed that different genomic foundation models excel at different downstream VEP tasks, necessitating a universal tool such as DYNA to fully harness the power of genomic foundation models. Thus, DYNA offers a potent disease-specific VEP method for clinical variant interpretation.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"59 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01016-8","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical variant classification of pathogenic versus benign genetic variants remains a challenge in genetics. Current genomic foundation models have enhanced variant effect prediction (VEP) accuracy through weakly supervised or unsupervised training, yet these models lack disease specificity. Here, to address this, we propose DYNA (disease-specificity fine-tuning via a Siamese neural network), broadly applicable to all genomic foundation models for more effective VEPs in disease contexts. We applied DYNA to the coding VEP in cardiovascular diseases and the non-coding VEP of RNA splicing regulation. These two tasks cover a wide range of specific disease–gene relationships and disease-causing regulatory mechanisms; therefore, their performance will inform the general utility of DYNA. In both cases, DYNA fine-tunes various pretrained genomic foundation models on small rare-variant sets. The DYNA fine-tuned models show superior performance in held-out rare-variant test sets and are further replicated in large, clinically relevant variant annotations in ClinVar. Importantly, we observed that different genomic foundation models excel at different downstream VEP tasks, necessitating a universal tool such as DYNA to fully harness the power of genomic foundation models. Thus, DYNA offers a potent disease-specific VEP method for clinical variant interpretation.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.