Jinzhuan Cai, Jin Guo, Alexander L. Gavrilyuk, Ilia Ponomarenko
{"title":"A Large Family of Strongly Regular Graphs with Small Weisfeiler-Leman Dimension","authors":"Jinzhuan Cai, Jin Guo, Alexander L. Gavrilyuk, Ilia Ponomarenko","doi":"10.1007/s00493-025-00145-3","DOIUrl":null,"url":null,"abstract":"<p>In 2002, D. Fon-Der-Flaass constructed a prolific family of strongly regular graphs. In this paper, we prove that for infinitely many natural numbers <i>n</i> and a positive constant <i>c</i>, this family contains at least <span>\\(n^{c\\cdot n^{2/3}}\\)</span> strongly regular <i>n</i>-vertex graphs <i>X</i> with the same parameters, which satisfy the following condition: an isomorphism between <i>X</i> and any other graph can be verified by the 4-dimensional Weisfeiler-Leman algorithm.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00145-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 2002, D. Fon-Der-Flaass constructed a prolific family of strongly regular graphs. In this paper, we prove that for infinitely many natural numbers n and a positive constant c, this family contains at least \(n^{c\cdot n^{2/3}}\) strongly regular n-vertex graphs X with the same parameters, which satisfy the following condition: an isomorphism between X and any other graph can be verified by the 4-dimensional Weisfeiler-Leman algorithm.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.