Zero-Valent Iron Inside Carbon Nanocube as an Efficient Peroxymonosulfate Activator toward Catalytic Oxidation of Organic Pollutants

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xinyue Li, Shuang Jin, Yi Wang, Zhimin Cui, Zhe Chen
{"title":"Zero-Valent Iron Inside Carbon Nanocube as an Efficient Peroxymonosulfate Activator toward Catalytic Oxidation of Organic Pollutants","authors":"Xinyue Li, Shuang Jin, Yi Wang, Zhimin Cui, Zhe Chen","doi":"10.1021/acs.jpcc.4c08677","DOIUrl":null,"url":null,"abstract":"The agglomeration tendency of nano zero-valent iron (Fe<sup>0</sup>) limits its practical applications toward catalytic oxidation of organic pollutants. Herein, an in situ encapsulation of polydopamine on the surface of Prussian blue (PB) nanocubes followed by a confined reduction treatment strategy was presented to confine the zero-valent iron nanoparticles (Fe<sup>0</sup>) inside hollow carbon nanocube (Fe<sup>0</sup>@C) as an efficient peroxymonosulfate (PMS) activator toward catalytic oxidation of toxic organic contaminants. The catalytic results showed that 100% degradation of bisphenol A (BPA) could be completed within 5 min with Fe<sup>0</sup>@C nanocube as a catalyst to activate PMS. This delicately designed Fe<sup>0</sup>@C nanocube displayed a superior kinetic rate constant compared with the pure Fe<sup>0</sup> nanoparticles (4.2-fold). Experimental evidence revealed that the generation of multiple reactive oxygen species in the nanocubes played a vital role for the significantly enhanced catalytic efficiency for organic contaminants. Both SO<sub>4</sub><sup>•–</sup>, •O<sub>2</sub><sup>–</sup>, and •OH dominated radical processes, and nonradical pathways involving <sup>1</sup>O<sub>2</sub> were accounted for PMS activation and organic contaminant degradation. The superior catalytic performance was attributed to a carbon layer with large specific surface area and highly dispersed Fe<sup>0</sup> nanoparticles to provide abundant active sites, distinct nanocube structure to concentrate the reactant molecules within a confined space, and an excellent electron/mass transport property.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"8 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08677","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The agglomeration tendency of nano zero-valent iron (Fe0) limits its practical applications toward catalytic oxidation of organic pollutants. Herein, an in situ encapsulation of polydopamine on the surface of Prussian blue (PB) nanocubes followed by a confined reduction treatment strategy was presented to confine the zero-valent iron nanoparticles (Fe0) inside hollow carbon nanocube (Fe0@C) as an efficient peroxymonosulfate (PMS) activator toward catalytic oxidation of toxic organic contaminants. The catalytic results showed that 100% degradation of bisphenol A (BPA) could be completed within 5 min with Fe0@C nanocube as a catalyst to activate PMS. This delicately designed Fe0@C nanocube displayed a superior kinetic rate constant compared with the pure Fe0 nanoparticles (4.2-fold). Experimental evidence revealed that the generation of multiple reactive oxygen species in the nanocubes played a vital role for the significantly enhanced catalytic efficiency for organic contaminants. Both SO4•–, •O2, and •OH dominated radical processes, and nonradical pathways involving 1O2 were accounted for PMS activation and organic contaminant degradation. The superior catalytic performance was attributed to a carbon layer with large specific surface area and highly dispersed Fe0 nanoparticles to provide abundant active sites, distinct nanocube structure to concentrate the reactant molecules within a confined space, and an excellent electron/mass transport property.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信