{"title":"On the disagreement problem in Human-in-the-Loop federated machine learning","authors":"Matthias Huelser , Heimo Mueller , Natalia Díaz-Rodríguez , Andreas Holzinger","doi":"10.1016/j.jii.2025.100827","DOIUrl":null,"url":null,"abstract":"<div><div>The popularity of Artificial Intelligence (AI) has risen sharply in recent years, revolutionizing applications in most sectors with unprecedented functionalities. Milestones and achievements like ChatGPT demonstrate not only the impressive capabilities of AI, but also how accessible such technologies have become in recent times. However, the success of AI applications depends heavily on the underlying information integration processes. Among the most important processes are the training of the AI model at the core of the application and the collection and pre-processing of training data. In particular, the task of collecting high-quality training data can be very costly and resource-intensive, as in many cases large amounts of data have to be annotated manually. Human annotators must have extensive expertise for certain tasks in order to provide high-quality training data. In this paper, we present a framework to maximize the efficiency of human experts in a Machine Learning (ML) scenario, with the aim of optimizing the use of human expertise in active learning. This is done by constantly measuring the quality of human experts’ input, as well as by involving human annotators only when needed. We showcase the benefits of our proposed framework by applying it to a problem in image classification, proving its usefulness to reduce the cost of annotating training data. The source code of the framework is publicly available at <span><span>https://github.com/human-centered-ai-lab/app-HITL-annotator</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"45 ","pages":"Article 100827"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X25000512","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The popularity of Artificial Intelligence (AI) has risen sharply in recent years, revolutionizing applications in most sectors with unprecedented functionalities. Milestones and achievements like ChatGPT demonstrate not only the impressive capabilities of AI, but also how accessible such technologies have become in recent times. However, the success of AI applications depends heavily on the underlying information integration processes. Among the most important processes are the training of the AI model at the core of the application and the collection and pre-processing of training data. In particular, the task of collecting high-quality training data can be very costly and resource-intensive, as in many cases large amounts of data have to be annotated manually. Human annotators must have extensive expertise for certain tasks in order to provide high-quality training data. In this paper, we present a framework to maximize the efficiency of human experts in a Machine Learning (ML) scenario, with the aim of optimizing the use of human expertise in active learning. This is done by constantly measuring the quality of human experts’ input, as well as by involving human annotators only when needed. We showcase the benefits of our proposed framework by applying it to a problem in image classification, proving its usefulness to reduce the cost of annotating training data. The source code of the framework is publicly available at https://github.com/human-centered-ai-lab/app-HITL-annotator.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.