On the disagreement problem in Human-in-the-Loop federated machine learning

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Matthias Huelser , Heimo Mueller , Natalia Díaz-Rodríguez , Andreas Holzinger
{"title":"On the disagreement problem in Human-in-the-Loop federated machine learning","authors":"Matthias Huelser ,&nbsp;Heimo Mueller ,&nbsp;Natalia Díaz-Rodríguez ,&nbsp;Andreas Holzinger","doi":"10.1016/j.jii.2025.100827","DOIUrl":null,"url":null,"abstract":"<div><div>The popularity of Artificial Intelligence (AI) has risen sharply in recent years, revolutionizing applications in most sectors with unprecedented functionalities. Milestones and achievements like ChatGPT demonstrate not only the impressive capabilities of AI, but also how accessible such technologies have become in recent times. However, the success of AI applications depends heavily on the underlying information integration processes. Among the most important processes are the training of the AI model at the core of the application and the collection and pre-processing of training data. In particular, the task of collecting high-quality training data can be very costly and resource-intensive, as in many cases large amounts of data have to be annotated manually. Human annotators must have extensive expertise for certain tasks in order to provide high-quality training data. In this paper, we present a framework to maximize the efficiency of human experts in a Machine Learning (ML) scenario, with the aim of optimizing the use of human expertise in active learning. This is done by constantly measuring the quality of human experts’ input, as well as by involving human annotators only when needed. We showcase the benefits of our proposed framework by applying it to a problem in image classification, proving its usefulness to reduce the cost of annotating training data. The source code of the framework is publicly available at <span><span>https://github.com/human-centered-ai-lab/app-HITL-annotator</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"45 ","pages":"Article 100827"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X25000512","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The popularity of Artificial Intelligence (AI) has risen sharply in recent years, revolutionizing applications in most sectors with unprecedented functionalities. Milestones and achievements like ChatGPT demonstrate not only the impressive capabilities of AI, but also how accessible such technologies have become in recent times. However, the success of AI applications depends heavily on the underlying information integration processes. Among the most important processes are the training of the AI model at the core of the application and the collection and pre-processing of training data. In particular, the task of collecting high-quality training data can be very costly and resource-intensive, as in many cases large amounts of data have to be annotated manually. Human annotators must have extensive expertise for certain tasks in order to provide high-quality training data. In this paper, we present a framework to maximize the efficiency of human experts in a Machine Learning (ML) scenario, with the aim of optimizing the use of human expertise in active learning. This is done by constantly measuring the quality of human experts’ input, as well as by involving human annotators only when needed. We showcase the benefits of our proposed framework by applying it to a problem in image classification, proving its usefulness to reduce the cost of annotating training data. The source code of the framework is publicly available at https://github.com/human-centered-ai-lab/app-HITL-annotator.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信